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Abstract We present a novel method to investigate the effects of varying channel parameters on
geometrically shaped constellations for communication systems employing the blind phase search algo-
rithm. We show that introduced asymmetries significantly improve performance if adapted to changing
channel parameters. ©2022 The Author(s)

Introduction
Blind phase search (BPS) is a state-of-the-art al-
gorithm for blind, feed-forward, carrier phase syn-
chronization for high-rate coherent optical com-
munications receivers. A big advantage over
decision-directed, feedback-based carrier phase
synchronization algorithms is the possibility for
parallel and pipelined implementation [1]. When
a classical square quadrature amplitude modula-
tion (QAM) constellation is used in systems em-
ploying BPS as their carrier phase synchroniza-
tion algorithm, a phase ambiguity is introduced
by rotational symmetry of the constellation. Ad-
ditionally, classical square QAM suffers from a
penalty in achievable rate and a gap to capac-
ity, which can be overcome with geometrically or
probabilistically shaped constellations [3], [4], [6]–
[10]. Therefore, we propose to apply geomet-
ric constellation shaping to improve spectral ef-
ficiency and robustness of optical communication
systems employing BPS. In previous works, ge-
ometric constellation shaping (GCS) for BPS has
been either optimized on a single set of channel
parameters [10], or on a range of sets of channel
parameters [8]. In [10], performance is only im-
proved for channel parameters which have been
used for training, or in better channel conditions.
Training on a range of channel parameters results
in a constellation which is robust to varying chan-
nel parameters, but may be underperforming for
good channel conditions [8], [10]. For both ap-
proaches, changes in the position of constellation
points compared to classical square QAM can-
not easily be attributed to either performance im-
provement of the BPS algorithm, or robustness to
channel impairments.Thus we propose to apply
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GCS with an additional channel condition param-
eter input at the mapper and demapper to investi-
gate the effect of varying channel parameters on
GCS for BPS. A similar approach with parameter-
izable and trainable neural mapper and demapper
has been shown in [6] for additive white Gaussian
noise (AWGN) channels. This will show effects of
variation in different channel parameters on con-
stellations maximizing the bitwise mutual informa-
tion (BMI)1. We will compare the performance of
the parameterized GCS constellation with a clas-
sical square QAM constellation and a constella-
tion robust to changes in parameters.

Parameterizable Binary Auto-Encoder
The system model in Fig. 1 used for our work is
an end-to-end (E2E) model representing a high-
rate coherent optical communication system with
a transmission channel affected by AWGN and
laser phase noise. We use a binary auto-encoder
to perform the GCS, which uses bit vectors of
length m bits per symbol as input and outputs
m log-likelikood ratios (LLRs). At the transmit-
ter (Tx), m information bits bk are converted to
a one-hot vector. The AWGN standard devia-
tion σn and Wiener phase noise increments’ stan-
dard deviation σϕ are fed as inputs to the Tx-
neural network (NN) to generate a constellation
M of size |M| = 2m. With the output of the Tx-
NN and the one-hot vector, one complex constel-
lation point xk ∈ M is selected. This is rep-
resented in the system model in Fig. 1 as dot
product (⊙) between the one-hot vector and the
constellation vector. The complex symbol vec-
tor x = (x0, . . . , xB−1)

T for one batch of size B

is sent through the auto-encoder channel model.
In our system model the auto-encoder channel is

1The BMI is often referred to as generalized mutual infor-
mation (GMI) in the optical communications community. We
prefer to use the term BMI due to its easier resemblence with
the operational meaning.
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Fig. 1: System model of parameterizable auto-encoder with differentiable BPS

comprised of AWGN, Wiener phase noise and a
differentiable BPS. The differentiable BPS differs
from the classical, non-differentiable, BPS algo-
rithm in the replacement of the argmax operation
with a differentiable approximation [10]. At the
output of the (differentiable) BPS, complex sym-
bols x̂ are sent to a neural demapper with a re-
ceiver (Rx)-NN, which returns m LLRs. The Tx-
NN consists of an input dimension of 2 and two
fully connected layers with output dimension of
2m+1 with ReLU activation functions for the input
and hidden layer. In contrast to the system model
shown in [10], both neural mapper and demap-
per have additional inputs for σn and σΦ, which
allows the GCS to be optimized across a range of
channel conditions. At the transmitter (Tx), an op-
timized constellation for a particular channel con-
dition can be obtained by evaluating the output of
the Tx-NN. We implemented our system for simu-
lation and validation in the PyTorch framework [5].

Parameterized GCS Setup
To learn a geometrically shaped constellation
which is optimized on a range of channel condi-
tions, defined by a pair of parameters σn and σϕ,
we take the following approach: For every batch
in a training epoch, a new σn and σΦ is sampled
uniformly in [σn,min, σn,max] and [σϕ,min, σϕ,max].
The BPS algorithm is updated accordingly with
the transmit constellation obtained with the new
parameters. In this work, we selected σn such
that the signal to noise ratio (SNR) is between
14 dB and 25 dB and σΦ is selected such that the
laser linewidth is between 50 kHz and 600 kHz for
a symbol rate of 32GBaud. BPS has been con-
figured with 60 test angles and a window size
of 128. Training has been performed for 1000
epochs with a linearly increasing batchsize from
1000 to 10000 samples. Similar to [10], the tem-
perature parameter of the differentiable BPS is
decreased from 1.0 to 0.001 during training to ap-
proximate the real BPS more closely at the end
of the training. The binary cross entropy (BCE) is
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Fig. 2: Shaped constellation at SNR of 18dB and varying
laser linewidth
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Fig. 3: Shaped constellation at a laser line width of 100 kHz
and varying SNR

used as loss function and the Adam algorithm [2]
is used for the optimization. With the binary auto-
encoder, both geometric shaping and bit labelling
are optimized simultaneously. For simplicity, bit
labels are omitted in the constellation plots.

Effects of Varying Channel Parameters
To investigate the separate effect of varying
AWGN and Wiener phase noise on the shaped
constellation for m = 6 bits per symbol, we plot
some transmit constellations in Fig. 2 and Fig. 3.
In Fig. 2, AWGN is fixed to yield an SNR of 18 dB
and the linewidth is varied between 50 kHz, which
is shown in blue, and 600 kHz, which is shown
in orange. It can be observed that most points
in the transmit constellation deviate insignificantly
for varying linewidth. The biggest change is ob-
served for a single constellation point in the top
right of the constellation, which is shifted out-
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Fig. 4: Validation results of parameterizable GCS for different
SNRs

wards for a larger laser linewidth. A smaller but
notable shift outwards can be observed for three
constellation points in the bottom right. This ob-
servation can be explained with improved per-
formance of the BPS algorithm if a constellation
point is separated by a larger distance radially.
In Fig. 3, we display transmit constellations for
a fixed laser linewidth of 100 kHz and the SNR
varying between 14 dB, in blue color, and 25 dB,
in orange color. For low SNRs, the constellation
points are clustered in groups, which shows the
effect of reducing the distance between constella-
tion points differing in a single bit and increasing
the distance between other constellation points.
Similarly to the effects of varying linewidths in
Fig. 2, the same constellation points are moved
outwards for low SNR, which, again, points to im-
proved BPS performance due to less ambiguities
of the constellation impaired by phase rotations.

Performance With Parameter Misestimation
In Fig. 4, we show validation results in terms of
BMI for parameterizable geometric constellation
shaping (pGCS) constellations. The results are
shown in the plot for a range of SNRs and across
a range of laser linewidths. The results displayed
in solid lines are obtained with matching param-
eter inputs to the Tx-NN and Rx-NN. This cor-
responds to transmitter and receiver with perfect
channel knowledge. For results with dotted lines,
the SNR is overestimated by 2 dB at the receiver
and transmitter. Results in dashed lines are per-
formed with the autoencoder system underesti-
mating the SNR by 2 dB. For high SNRs, estima-
tion errors in the SNR do not incur a performance
penalty with the transmitter and matched receiver
system. Underestimating the SNR always leads
to a better BMI than overestimating.
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Fig. 5: Performance comparison of parametrizable GCS with
square QAM and robust constellation from [8]

Performance comparison
In Fig. 5, the validation results of the pGCS
constellation, a Gray-mapped square QAM and
a constellation robust to variance in the chan-
nel parameters [8] are compared in terms of the
BMI. The Gray-mapped square QAM constella-
tion, which is combined with a matched parame-
terized neural demapper, and the robust constel-
lation are trained on the same range of channel
parameters as the pGCS constellation, but with-
out a parameterized channel condition input. The
pGCS constellation outperforms the reference
constellations for all channel conditions. The ro-
bust constellation matches the performance of
the pGCS constellation very closely for 17 dB and
18 dB, but shows a significantly worse perfor-
mance for higher and lower SNR. The robust con-
stellation shows a good performance for increas-
ing laser linewidth, with only an insignificant drop
in performance compared to the pGCS constella-
tion. The performance of the Gray-mapped QAM
constellation is close to the performance of the
pGCS constellation for high SNR and low laser
linewidth. For increasing laser linewidths, a sub-
stantial drop in performance can be observed.

Conclusions
In this work, we have shown the effect of changes
in channel parameters for GCS constellations in
the presence of the BPS algorithm for carrier
phase recovery. We have introduced the novel
pGCS constellation. For higher laser linewidths
and AWGN, the introduced asymmetry of a small
number of constellation points contributes signif-
icantly to performance improvement over static
reference constellations.
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