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Abstract 6G networks will deliver immersive applications that bridge real and digital worlds. The next-
generation optical access network is a potential optical transport solution. In view of dynamic network 
conditions, we propose a machine learning driven solution that rapidly self-adapts to support new 6G 
applications. ©2022 The Author(s) 

Introduction 
Over the last 30 years, optical access networks 
have continued to evolve to satisfy the ever-
increasing bandwidth demand, customer 
numbers and quality-of-service requirements of 
fixed business and residential, as well as 4G and 
5G mobile network deployments [1]. Specifically, 
passive optical network (PON) standards are now 
specifying speeds of up to an aggregate 50 Gbps, 
e.g. IEEE 802.3ca 25G/50G-EPON standard [2] 
and the ITU-T G.9804 High Speed PON [3].  With 
a point-to-multipoint physical topology that 
harnesses a shared fibre infrastructure, low 
component count alongside an unpowered optical 
distribution network (ODN), PON yields 
substantial cost-savings [4].  The physical 
topology of the PON also lends itself naturally to 
statistically multiplexing densely located remote 
radio units (RU) of the centralised radio access 
network (RAN) architecture.  In this architecture, 
Central/Distribution Units (CU/DUs) are located at 
the central office of the PON and are connected 
directly via the ODN to remote Radio Units (RUs) 
located at the optical network units (ONUs).  

Today, as mobile networks evolve towards 6G 
with the use of increasingly higher carrier 
frequencies that necessitates shorter-ranged, 
smaller-sized and highly-dense cells, the above-
mentioned benefits of PON as a mobile fronthaul 
(MFH) solution, is just as relevant. With fibre 
installations penetrating deeper towards the end 
user equipment (UE) and with speeds of 50 Gbps 
and beyond, PON technology is expected to 
increase the reach and provide the capacity 
required by 6G. The business case to consider an 
optical rather than a radio access network (RAN) 
becomes even more compelling when spare fibre 
in already installed optical access networks, e.g. 
urban cities, is available for use [5].  

However, 6G is envisioned to support diverse 
and immersive applications including mixed 
reality (XR), holographic communication, human-
to-machine/robot communications, Tactile 

Internet, digital sensing, etc. [6]. So even though 
the deployment of PON technology may meet 
MFH bandwidth requirements, open challenges 
pertaining to meeting differing quality-of-service 
requirements of 6G immersive applications, still 
exist. That is, not only must the unprecedented 
demand for high-bandwidth capacities (> 1Tbps) 
be met, ultra-low latencies (~ microseconds), 
ultra-high reliability (6 nines), and massive 
connectivity over 3D coverage areas must also be 
supported [1].   

As such, 6G will need to adopt truly open 
RANs (O-RANs) with intelligent and 
interoperable RAN elements and RAN software, 
alongside machine intelligence to enable real-
time network resource and network failure 
management decisions. In this regard, the O-
RAN Alliance supports the functional split of 
option 7.2 to meet high-capacity and high-
reliability requirements [7]-[8].  The ability of 
enhanced Enhanced Common Public Radio 
Interface (eCPRI) to run on Ethernet is a 
significant advantage in urban areas and in 
indoor environments such as factories and office 
blocks. At this functional split, baseband 
processing is partially or wholly executed in the 
RU, and packetised eCPRI data is transmitted 
through an Ethernet interface over the PON. 
Option 7.2 has a strict latency requirement of 250 
μs (one way) on the MFH.  With the PON serving 
as the optical fronthaul, the uplink latency 
performance is highly dependent on how 
bandwidth is allocated to each RU for uplink 
transmission seeing that in the upstream 
direction, bandwidth is shared.  

Innovative bandwidth allocation schemes to 
satisfy the uplink MFH bandwidth and latency 
requirements have been previously proposed. 
These rely on the report-grant process typical of 
TDM-PONs [9], including cooperative-dynamic 
bandwidth allocation (DBA) schemes that uses 
fronthaul traffic information through a cooperative 
transport interface message to improve overall 
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latency and bandwidth utilisation, e.g. [10]-[13], 
priority scheduling DBA based on traffic load [14], 
bandwidth guaranteed DBA based on network 
slicing of mobile and other services [15], and self-
adjusting DBA that dynamically adjusts fronthaul 
allocation intervals based on reports [16].  

Considering a dynamic network environment 
that also supports immersive experiences, the 
MFH of 6G must be able to rapidly adapt to 
changing traffic patterns and network conditions. 
In this work, we propose a rapid and self-adaptive 
Machine Learning (ML) driven DBA that 
incorporates reinforcement learning (RL) to 
achieve self-adaptive and optimised bandwidth 
decision for the MFH, with transfer learning (TL) 
to reduce the decision learning time. Here, we 
show an uplink latency of less than 150 μs can be 
attained in a 16 ONU-RU XGS-PON MFH under 
different traffic pattern and load scenarios.  

Fast Self-Adaptive DBA (FSA-DBA) for MFH  
Different to conventional DBAs, and as shown in 
Fig. 1, existing MFH DBA schemes rely on the 
synchronization	of	the	PON	DBA	report-grant	process	with	the	
MFH	 bandwidth	 allocation	 process	 through	 CU-OLT	
scheduling	 and	 the	 estimation of  the bandwidth 
required by ONU-RUs, i.e., Tgrant.  In existing 
MFH DBA schemes, Tgrant estimation depends on 
knowing ONU-RUs traffic characteristics.  

Our proposed FSA-DBA does not depend on 
prior knowledge of MFH traffic for fast and self-
adaptive Tgrant decision.  Through RL, the CU-
OLT progressively adjusts Tgrant based on the 
rewards received from executing different Tgrant 
decisions. To reduce latency, a negative uplink 
latency from allocating a Tgrant in MFH is deemed 
as the reward. The CU-OLT then uses a decision-
value function, termed as Qtarget, to associate a 
Tgrant with its long-term average reward. The 
Qtarget in turn serves as the metric to adjust Tgrant. 
Such an iterative learning and decision 
adjustment process enables self-adaptive and 
optimized Tgrant decision. 

As the decision exploration in RL costs time, 
rapid learning that reduces the number of nonn-
optimised 𝑇!"#$% decisions is thus critical to 
reducing uplink latency. We leverage TL to reuse 
existing decision-value knowledge to expedite 

learning. Referring to a set of source decision-
value set Q = {Qsource,n} pre-acquired either 
through simulations or past MFH operations, the 
FSA-DBA identifies the source knowledge, 
indexed by n*, that is most related to the learning 
of the Qtarget as follows: 

 
           		𝑛∗ ← argmax'|𝑄()*"+,,' − 𝑄%#"!,%|       (1) 
 
The distance |Qsource,n - Qtarget| in (2) implies the 
similarity between the source environment where 
Qsource,n is obtained and the current learning 
environment [16]. Knowing Qsource,n* guides the 
decision exploration in a neighbourhood range D 
= [T*grant.n* - δ, T*grant.n* + δ] to the T*grant.n* = argmax 
Qsource,n*. For fast convergence, the greedy policy 
is adopted to adjust Tgrant: 
 
                 						𝑇!"#$% ← argmax.𝑄%#"!,%          (2) 
 
With the source knowledge to guide the decision 
exploration, learning time can be reduced.  In 
operation, an ONU-RU will report its latency 
every K cycles.  At the CU-OLT, Qtarget will be 
updated based on the empirical reward reported 
by ONU-RUs.  Subsequently, Tgrant is adjusted by 
referring to the source Q set following (1) and (2). 

Performance Evaluation 
We perform packet-driven simulations to validate 
the latency and learning rate of the FSA-DBA. We 
consider a 10 km-link XGS-PON with 16 ONU-
Rus to support a MFH with 500Mbps radio 
access capacity.  We further upstream packet 
arrivals to be exponentially (EXP) [10]-[11], 
Generalized Pareto (GP) [17] and Gamma (GA) 
[17] distributed.  

Fig. 2 compares the latency performance of 
FSA-DBA, cooperative DBA scheme with arrival 
estimation in [12] and baseline DBA scheme, i.e., 

 
Fig. 1 An illustration of MFH DBA.  
 
 

 
Fig. 2 Latency performance of FSA-DBA with different 
traffic patterns in simulations.  
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IPACT via report-grant process. Unsurprisingly, 
the baseline scheme incurs the highest latency 
since each packet needs to be first reported and 
then granted bandwidth. At minimum, the packets 
wait for approximately 100 μs, i.e. round-trip 
between ONU-RU and the CU-OLT. Using 
cooperative DBA eliminates the report-grant 
process, and hence the latency is reduced as 
compared to the baseline DBA scheme. 
Nonetheless, decisions for Tgrant arer based on 
the arrival estimation of fixed-length cycles (50 
μs) and its results in Fig. 2, clearly reflect its lack 
of flexibility towards different traffic patterns and 
loads. In comparison, FSA-DBA does not 
encounter such issues due to its ability to self-
adaptively adjust bandwidth decisions as well as 
grant cycles, achieving the lowest uplink latency 
(150 μs) with optimised decisions via explorative 
learning.  

We also investigated the learning rate and 
latency of applying FSA-DBA to empirical traffic 
traces previously collected from an immersive 
human-to-robot application experiments. [18]. 
Simulated Q functions in afore-mentioned 
settings, i.e., EXP, GP, GA distributed traffic and 
ONU-RU loads between 0.1 to 1, were used as 
source Q to assist the learning of Qtarget for our 
empirical traffic. With K = 10, our results highlight 
that TL, only a few tens of iterations are needed 
to explore an optimal decision as compared 
hundreds of iterations with just RL. 

Summary 
We proposed an ML-driven DBA that rapidly self-
adapts bandwidth allocation decisions to achieve 
low-latency uplink transmissions in the MFH. 
Results show uplink latencies of less than 150 μs 
can be achieved with self-adaptive decisions 
under different traffic patterns and load scenarios. 
By using simulated decision-value knowledge to 
assist empirical decisions, decision learning is 
further expedited. With PON as a potential optical 
mobile fronthaul solution, the proposed 
bandwidth allocation scheme, FSA-DBA, not only 
satisfies the uplink MFH bandwidth and latency 
requirements of 6G immersive experiences but 
also rapidly self-adapts to changing traffic 
conditions. 
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