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Abstract Analytical QoT models require safety margins to account for uncertain knowledge of input
parameters. We propose and evaluate a design procedure that gradually decreases these margins in
presence of multiple physical-layer uncertainties, by leveraging monitoring data to build a ML-based QoT
regressor. ©2022 The Author(s)

Introduction

Quality of Transmission (QoT) estimators are es-
sential to predict the performance of unestab-
lished lightpaths during network planning. Exist-
ing analytical models account for major impair-
ments, such as nonlinear interference (NLI)1, am-
plified spontaneous emission (ASE) noise, optical
filtering2. They achieve high accuracy, assuming
exact knowledge of input parameters3. However,
in real-life these inputs are often not known pre-
cisely, so safety margins are imposed to guaran-
tee that modulation format (MF) configured with
predicted QoT is above the FEC threshold in the
field deployment, and lightpath is not disrupted.

Notable research effort has been recently ded-
icated to lowering these margins and effectively
utilizing resources. One approach, “input re-
finement”, aims at estimating the precise values
of uncertain physical-layer (PL) parameters4, 5, 6.
Another approach, “probabilistic QoT modelling”,
accepts the lack of precision from multiple uncer-
tain PL parameters and estimates the distribution
(or its statistics) of a QoT metric7, 8. Knowing
this distribution, we can decide to set conserva-
tive (high) or aggressive (low) margins, based on
the desired tolerance to lightpath being disrupted
and reestablished with lower MF.

In this work we follow this second approach
and incorporate a probabilistic ML QoT regressor
into a design procedure that gradually decreases
safety margins, which are then consumed to save
spectrum and optical transponders. Differently
from most of previous literature (e.g.,8), we jointly
consider multiple PL uncertainties (uncertain am-
plifier gain ripple, connector losses and fiber
types) and predict a range of SNR margins for
the analytical model. Our numerical results on re-
alistic network instances show (5-10)% resource

savings by simply leveraging SNR data monitored
at receivers, and paying off a very low increment
in lightpath disruption probability (within 0.3-4%).

Sources of Uncertainty

SNR at the receiver depends on the noise accu-
mulated in optical spans along the path. Each
span is composed of a fiber and an Erbium-
Doped Fiber Amplifier (EDFA) (see Fig. 1c), that
introduce NLI and ASE noise, respectively. The
EDFA is characterized by average gain (G), gain
tilt (T ), noise figure (F ) and output power (Pout),
while the fiber is characterized by nonlinear coef-
ficient (η) and wavelength-dependent loss (WDL)
(ρ), both including Raman effects. Optical con-
nectors between EDFA and fiber are modelled as
input (δ) and output (δ‘) lumped losses.

Uncertainties in parameter values in this work
are due to 1) non-flatness of EDFA gain profile
(i.e., gain ripple), 2) unaccounted losses in optical
connectors, e.g., coming from dust and dirt, and
3) wrong fiber type specifications, due to, e.g., in-
ventory problems9. This uncertain knowledge of
PL parameters results in two main shortcomings,
i.e., launch powers are set suboptimally and ana-
lytical QoT estimation becomes inaccurate.

For the power setting, we use Locally-
Optimized Globally-Optimized (LOGO) strategy1

to achieve the highest SNR at the receiver. But
incorrect values of PL parameters lead to subop-
timal powers and lower QoT at the receiver. More
generically, by using incorrect PL parameter val-
ues in Generalized GN-model10, we obtain ana-
lytical QoT estimations different from actual QoT.

Focusing on the PL parameters defined above,
let us now discuss the difference between model
values used in analytical modelling and field val-
ues in the network devices. Fiber parameters: if
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Fig. 1: (a) Simulated scenarios (b) Single span SNR profiles
with three modelling assumptions (c) Fiber span

parametrization

an incorrect fiber type is specified in the inventory,
then model and field values for η and ρ are differ-
ent. Connector losses: field values of δ and δ‘ are
typically higher than model ones due to contami-
nation. EDFA parameters: the model value of G
is set to compensate for propagation loss in the
specified fiber type, for model connector losses,
and to reach Pout set by LOGO model. Instead,
field value of G is set to compensate for actual
field loss, yet to reach the same Pout computed
with model values, that is now suboptimal. Differ-
ently from G, both model and field values of T are
set to compensate for model value of ρ. Note also
that model gain profile is assumed flat, while field
gain profile is affected by gain ripple. We assume
model and field F to be equal, constant, and in-
dependent from the gain.

Fig. 1b illustrates the SNR (over a single span)
obtained for three modelling assumptions with
model and/or field parameter values (used val-
ues are specified in the Numerical Results sec-
tion). SNRModel is calculated using model val-
ues of PL parameters, i.e., it is the SNR pre-
dicted with the analytical model. SNRField rep-
resents SNR actually measured in the field; in
this work we emulate SNRField using the field
values of PL parameters, but with suboptimal
model power setting (for this reason, SNRField <

SNRModel). SNRIdeal is the SNR that could ide-
ally be achieved in the field if all field parameter
values were perfectly known beforehand, and it
is calculated using the field values and optimal
power setting (hence SNRIdeal > SNRField).

Simulated Scenarios
We simulate four scenarios, that are related to the
three SNR modelling assumptions, as shown in

Fig. 1a. In current practice, SNRModel is used
to set MF, and since it is typically overestimated
(due to model power setting being suboptimal in
the field and inaccurate QoT prediction), a safety
margin M is imposed, such that SNRModel−M ≤
SNRField. In Baseline scenario we consider a
worst-case margin MWorst, while in Proposed
scenario we estimate a lower margin MML using
ML over monitoring data. Field scenario assumes
that our estimations of M are perfect, and we use
SNRField to set the MF. Finally, in Ideal scenario
we assume that field values of PL parameters are
known, and MF is set using SNRIdeal

1.

Methodology
We provision traffic requests using k-Shortest-
Path routing and First-Fit spectrum allocation.
Starting from greenfield we configure MFs of the
first N lightpaths based on SNRModel −MWorst.

To estimate MWorst, we test a large num-
ber of gain ripple profiles, connector loss values
and fiber types to find the worst-case value of
SNRModel −SNRField in every link, and then ag-
gregate these per-link values into per-path values.

After N lightpaths are established, we use
N values of measured SNRField to train a ML
regressor that predicts MML = SNRModel −
SNRField, and use it as a margin instead of
MWorst (Fig. 3). We retrain it on all available data
after N new lightpaths are established.

To estimate MML, we use Neural Network with
a weighted loss function L(w) (known as quantile
or pinball loss11). Weight w can be set to penalize
under- or over-estimations for a conservative or
aggressive prediction, respectively2. We predict
MML per path, and the feature vector encodes
the path as following: links of the path are rep-
resented by 1s, remaining network links - by 0s.
In other words, we learn the contribution of each
link uncertainties to SNRModel −SNRField at the
receiver, to predict it for new paths.

Numerical Results
We perform our numerical evaluations on two
realistic topologies, a 19-node European net-
work (EU19) and a 17-node German network
(GE17)12. Results are averaged considering 40

1Note that “input refinement” addresses both suboptimal
power and inaccurate QoT prediction, and can potentially
achieve performance of Ideal scenario, while “probabilistic
QoT modelling” only decreases margins with better QoT pre-
dictions, and is limited by the performance of Field scenario.

2Note that if estimated MML is too small, and configured
MF is below FEC threshold, we reconfigure the transponder
with a lower MF, if possible, or reroute the lightpath. Another
lightpath is then established to fully satisfy the traffic request.
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Fig. 2: Savings in Spectrum Occupation (SO) and Transponders (TRX), increase in Residual Capacity (RC) and Disruption
Probability (DP) w.r.t. Baseline scenario with MWorst

Fig. 3: Proposed low-margin RMSA procedure

traffic matrices with data rate requests randomly
distributed between 200 Gb/s and 1000 Gb/s with
100 Gb/s step. We consider mesh traffic matrices,
where 70% of random node pairs transmit traffic.

We assume that EDFAs are placed every 80
km, with F equal to 5 dB. We operate in a 6-THz
C-band with ASE-loading. Traffic is provisioned
by 90 Gbaud transponders capable of 300-800
Gbit/s with 20 dB back-to-back SNR and SNR
thresholds from13 with a 1 dB system margin.

Connector losses are 0.5 dB in the model and
are uniformly distributed in [0.5; 1.5] dB in the
field. 75% of fiber spans are SMF, while 25% are
LEAF fibers. We assume that 20% of spans have
incorrect fiber type specified. For each field EDFA
we randomly select one of 18 ripple profiles mea-
sured on amplifiers in our testbed.

We use MWorst for the first N = 25 light-
paths, then start estimating MML and retrain the
model every 25 lightpaths after that. In Fig. 4
for GE17 and loss function with w = 0.1 we
demonstrate the difference between SNRField

and SNRModel −M . As more lightpath measure-
ments become available, SNRModel−MML tends
to SNRField, and MF is set based on SNR closer
to the field value.

In Fig. 2 we present savings in the Proposed
scenario with conservative and aggressive MML

estimations (w close to 0 and 1, respectively) and
in Field and Ideal scenarios, w.r.t. Baseline sce-
nario with MWorst, in terms of occupied spectrum
slots (SO), number of transponders (TRX), resid-

Fig. 4: Difference between SNRField (actual) and
SNRModel −M (used to set MF) in GE17 with w = 0.1

ual capacity in Gbit/s in the deployed transpon-
ders (RC) and disruption probability (DP).

In GE17 (EU19) we start with conservative
margins and save 4.4 (8.1)% in SO and 4.3
(7.5)% in TRX, having 2.7 (12.5) % more RC at
a cost of 0.32 (1.13)% lightpaths disrupted (and
re-established to satisfy traffic request). Savings
increase for more aggressive margins, and with
w = 0.5 reach 6.5 (10.1)% in SO and 6 (9.3)%
in TRX with 3.5 (16.7)% higher RC and 1.1 (4)%
of reconfigured lightpaths, so that less spectrum
and transponders can be used at a cost of more
lightpaths disrupted after provisioning.

Perfectly accurate QoT estimation in Field sce-
nario can potentially save 7.9 (12.3)% in SO and
7.4 (11.2)% in TRX with a 4.5 (18.9)% increase in
RC, meaning that with aggressive margin estima-
tions we are just a few % from the field optimum.
If we could also set powers optimally, in Ideal sce-
nario we can save 8.6 (14.9)% in SO, 8.3 (13.7)%
in TRX with a 5.9 (23.7)% increase in RC.

Conclusion

Considering 3 practical sources of uncertainty at
the physical layer, we demonstrate how a ML re-
gressor can be used to set lower margins, and
save spectrum and transponders at a cost of a
very small probability of lightpath disruption.
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