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Abstract We discuss an elastic optical network-based approach for evaluating QoT model substitution. 

Assessing QoT substitution is based on the fundamental idea that different QoT estimators should be 

examined by analysing their impact integrated with the routing and spectrum allocation algorithm. 

Machine learning is no exception. ©2022 Nokia Bell Labs 

Introduction 

Machine learning (ML) in optical networking is on 

the rise [1], [2]. Specifically, when designing and 

planning optical networks, it is often deemed as 

a promising tool for making quality of 

transmission (QoT) predictions in modern optical 

links, especially when physics states are hard to 

deduce and considerable design uncertainty 

margins of errors are expected [3]. 

Nevertheless, when examining the 

implementation of a QoT estimation model based 

on ML, we – as a community – have largely not 

considered how capacity is affected by a model 

substitution. Indeed, as reported in the survey 

paper [3, B. Evaluation Metrics], the main metrics 

to compare the performance of different QoT 

estimation tools, depending on cases, are the 

actual versus estimated errors, percentiles, and 

distances. We believe that we have been overly 

preoccupied with our own models’ performance 

and have overlooked the most critical task when 

testing the actual impact of model substitution 

when designing low-margin optical networks, 

namely, assessing network throughput capacity. 

The glass is half full: on the one hand, ML is 

revealed to be of great potential for QoT 

estimation; on the other hand, the studies lack an 

exhaustive assessment of the implications of a 

QoT estimation substitution when designing low-

margin optical networks. Lately, literature ([4]–

[6]) has started exploring these impacts yet has 

not completed a network capacity analysis to the 

best of the authors' knowledge. 

This paper advocates for an exhaustive 

assessment of the gain/loss of the network 

throughput capacity when targeting the 

substitution of a QoT estimator by incorporating 

design margins and error distribution 

characterization. Rehashing our previous works 

[7]–[9], this paper highlights a procedure to 

evaluate the substitution of the QoT estimation 

tool from a holistic point of view comprising the 

physical QoT model and the heuristic routing and 

spectrum allocation (RSA) algorithm. 

Methodology: comparing performance 

estimators for low margin design 

We compare the substitution of QoT models 

(e.g., analytical and ML-based) by evaluating the 

impacts when solving the RSA problem in case 

of uncertain network parameters and related 

design margins. Precisely, we use design 

margins to ensure the same lightpath (LP)-

feasibility reliability when comparing different 

QoT models. Eventually, we analyze the capacity 

throughput delivered by the RSA algorithm based 

on the different QoT margined models.  

The following two subsections underline the 

details of the discussed comparison procedure. 

Overestimation probability and design margins 

One of the primary goals when investigating ML 

for QoT is the improved resilience that ML 

guarantees against design parameter 

uncertainty, i.e., the unknown discrepancy 

between design parameter values and actual 

ones [10]. QoT estimators, conventional or ML-

based, account for design parameter uncertainty 

by adding extra margins to the performance 

estimate [11]. This way, we prevent performance 

overestimation (OE), which may result in 

deploying unfeasible LPs. ML delivers high 

uncertainty resilience, requiring smaller margins. 

The proposed comparison method roots in the 

design margins to cap LP OE probability in the 

presence of parameters uncertainty. We employ 

design margins intended to guarantee LP-

feasibility reliability as a common ground to 

compare different QoT estimation models [12], 

i.e., we analyse the different solutions at the 

same OE probability. 

In math jargon, we write the QoT estimator 

(conventional or ML-based) as follows: 

 �̂� = 𝑓QoT(𝝓design), (1) 
where �̂� is the QoT estimate (e.g., the 

generalized optical signal-to-noise ratio 
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(GOSNR), the Q²-factor, etc.), 𝑓QoT(⋅) is the QoT 

model function, and 𝝓design is the LP design 

parameters vector (including fibre lengths, 

amplifier noise figures, position of optical filters 

and wavelength-routing optical nodes, etc.). 

Independently on implementation, the estimators 

suffer from inaccuracy errors, namely: 

 𝜖 = �̂� − 𝜌, (2) 
where �̂� is the estimated performance and 𝜌 the 

actual one. If 𝜖 > 0, we have performance OE, 

i.e., actual performance is smaller than predicted 

one (�̂� > 𝜌). If 𝜖 < 0, we have underestimation 

(UE), i.e., actual performance is greater than 

estimated one (�̂� < 𝜌). OE is troublesome since 

it can result in unfeasible LPs, i.e., resulting in 

rejections of LPs. Being the estimation a 

probabilistic game, we can characterize the error 

as in Figure 1, where we show the probability 

density function (PDF) and the analogous 

cumulative distribution function (CDF) of 𝜖. We 

determine the OE margin, i.e., the additional 

margin to cap OE probability to a given value, 

𝑝OE. For instance, if we require 𝑝OE = 5%, we 

consider an additional margin for which 95% of 
evaluations produce UE, namely 𝑀𝑝OE

. This 

procedure is sketched in Figure 1. 

The model inaccuracy may originate from two 

factors. First, the estimate suffers from intrinsic 

inaccuracy due to the limitations of the model's 

theoretical description. Second, the estimate can 

suffer from input design parameter uncertainty 

inaccuracy, i.e., the actual parameters are 
different from the design ones, 𝝓actual ≠ 𝝓design. 

Without loss of generality, we focus on this latter 

inaccuracy source. A thorough investigation of 

input parameter uncertainty causes and effects 

can be found in [10]. To quantify the input design 

parameter uncertainty, we combine Equations (1) 

and (2), and we write the error of a general QoT 

model as follows: 

𝜖u,QoT = 𝑓QoT(𝝓design) − 𝑓GT(𝝓actual), (3) 
where 𝑓GT(⋅) is the function providing the actual 

quality of transmission, i.e., the ground truth (GT), 

and u labels the input parameter uncertainty 

level. We define the error as the difference 

between the QoT estimated with design 

parameters and the ground truth QoT with actual 

parameters. As customary when studying ML 

applied to QoT estimation, we assume the GN-

model as the GT, i.e.,  𝑓GT = 𝑓GN. Therefore, for 

what concerns GN-model we can sharpen 

Equation (3) in the following terms: 

𝜖u,GN = 𝑓GN(𝝓design) − 𝑓GN(𝝓actual). (4) 

By assessing the distribution of 𝜖u,GN we 

determine the OE margin for the GN-model, 

𝑀𝑝OE

u,GN
. Similarly, for the ML-based estimator: 

𝜖u,ML = 𝑓ML(𝝓design) − 𝑓GN(𝝓actual). (5) 

By assessing the distribution of 𝜖u,ML we 

determine the OE margin for the ML-based 

model, 𝑀𝑝OE

u,ML
. Finally, we formalize our 

framework by comparing the two margined 

versions of the inquired physical layer models at 

the equality of the OE rate, 𝑝OE, as follows 

𝐺𝑂𝑆𝑁𝑅̂
𝑝OE
GN = 𝑓GN(𝝓design) − 𝑀𝑝OE

u,GN
, (6.a) 

𝐺𝑂𝑆𝑁𝑅̂
𝑝OE
ML = 𝑓ML(𝝓design) − 𝑀𝑝OE

u,ML. (6.b) 

Routing and spectrum allocation algorithm 

To deliver a holistic comparison accounting for 

the impacts of a QoT model substitution at the 

network level, we run the RSA algorithm based 

on the margined QoT estimators - Equations (6.a) 

and (6.b). We target the network throughput as a 

comparison metric to study the impact at the 

network level. The overall comparison procedure 

is sketched in Figure 2. After determining the 

design margins, we compare the network 

throughput at OE rate parity. 

The throughput is the sum of the data rates 

delivered to every optical network transceiver. By 

solely reporting estimation accuracy or margins, 

we cannot quantify the benefits of a performance 

model substitution from a network perspective. 

Explanatory results and observations 

With this contribution we aim to advocate a for 

comparison methodology. Hence, results are 

characteristic of the scenarios and models 

 

 
Fig. 1 Qualitative definition of OE margin 𝑴𝒑𝐎𝐄

, i.e., the 

additional margin to cap OE probability to  𝒑𝐎𝐄 . 

 

 

Fig. 2 Sketch of the comparison procedure of QoT model 

substitutions in a nutshell. 
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investigated and not conclusive as general 

remarks for any model substitution. Results are 

from our paper [9], where details can be found 

thoroughly. We report only the main results 

highlighting remarkable pitfalls when not studying 

a model substitution from a network view. 

We investigate the impact of a QoT model 

swap when varying the prevailing source of 

uncertainty on top of an uncertainty reference 

model, i.e., base model, [9, Table 6]. We report 

results for a German-like network topology (G50) 

[9, Figure 4] with elastic optical transponders [9, 

Table 1]. We investigate the swap of the de-facto 

standard GN model against an ML-based one 

built on artificial neural networks (ANN) - like [8]. 

Figure 3 shows three instances of error 

distributions in the presence of different design 

parameter uncertainty. Solid lines denote the 

error distribution of the base model [9, Table 6]. 

Dashed lines are for span length uncertainty 

standard deviation doubled, from 5% to 10%. 

Dotted lines are for optical launch power standard 

deviation doubled, from 1 dB to 2 dB. We 

recognize that the error distributions are not 

Gaussian. Moreover, we observe that the three 

scenarios have distinctive distributions, 

presenting diverse skewness and kurtosis. 

Hence, we understand that we need a percentile 

approach to determine the margins. 

Figure 4 shows the margins for ensuring a 5% 

OE probability (see Figure 1). Circles are GN-

model and crosses are ML. We note smaller 

margins for ML-based estimation when doubling 

uncertainty on power, length, and attenuation. 

Finally, Figure 5 shows capacity gain/loss for 

G50 topology after running the RSA algorithm in 

[9, Figure 3] with the two different margined QoT 

models as per Equations (6.a) and (6.b). Bars 

represent different capacity gain/loss when 

substituting the traditional GN model with the ML-

based one and employing different margins, i.e., 

OE probability (5%, 1%, and 0.1%). Results are 

reported for different uncertainty scenarios.  

We note that swapping the traditional GN-

model with an ML-based does not guarantee a 

higher network throughput even when providing 

a smaller margin. These counterintuitive 

outcomes happen because the GOSNR error 

distribution shape (Figure 3) plays a paramount 

role in determining the network capacity's impact 

when performing resource allocation to establish 

new LPs with elastic transponders. Aggregated 

metrics, such as margins, cannot fully describe 

the modulation format allocation policy. Thus, 

they do not effectively represent the impacts on 

the overall network throughput. 

Conclusions 

We showed the importance of having a complete 

assessment of the network capacity throughput 

when assessing QoT model substitutions in low-

margin elastic optical network design. We should 

consider QoT tool and RSA algorithm combined 

for a fair comparison of different models. Indeed, 

observing only statistical properties of the 

estimation error of a ML-based estimator is not 

sufficient to conclude that it will lead to better 

global networking. 

(a) Zooming on  
UEs CDFs 

(b) Probability density and cumulative distribution  
around zero error 

(c) Zooming on  
OEs CDFs 

   
 

Fig. 3 GOSNR error distribution function for GN-model for different uncertainty conditions (base model, higher length uncertainty, higher 
power uncertainty) (b). PDF in blue and CDF in orange. We depict a zoom on the error CDF at high UE (a) or OE (c) levels. 

 

 
Fig. 4 5% OE margins with different uncertainty scenarios for 

GN-model (circles) and ML-based GOSNR estimation (crosses). 

 
Fig. 5 Capacity gain or loss (% [9, Equation 14]) for substituting the 

GN-model with an ML-based model for G50 topology. Different 
uncertainty scenarios and OE probability margins. 
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