Optical Network Telemetry with Streaming Mechanisms using
Transport APl and Kafka

R. Vilalta®, R. Casellas(", R. Martinez(", R. Mufioz", A. Gonzalez-Mufiz®, J.P. Fernandez-Palacios®

(1) Centre Tecnoldgic de Telecomunicacions de Catalunya (CTTC/CERCA), ricard.vilalta@cttc.es

@ Telefonica 1+D, Global CTO Unit

Abstract

We present a streaming mechanism for optical networks based on the Kafka architecture

and protocols, to efficiently distribute state and network updates following the upcoming ONF Transport
API streaming implementation agreement. The proposed mechanism is validated and experimentally

evaluated.

Introduction

In the last decade, the need for improving con-
trol and management protocols in optical Soft-
ware Defined Networks (SDN) has driven inno-
vation and novel mechanisms for controlling and
monitoring optical networks!'l. Several monitoring
and telemetry protocols, such as gRPC, gNMI, or
websockets, have been proposed to control and
manage network equipment, with the final inten-
tion of providing full network automation.

Large optical monitoring of datasets is possible
when combining them with massive cloud/edge
computational and storage resources.l presents
a complete telemetry service architecture includ-
ing both control plane and monitoring/manage-
ment plane modules with dedicated focus on dis-
aggregated optical networks.

Apache Kafka is an open-source event stream-
ing platformf. It provides a publish/subscribe
event bus that is called Kafka broker. It combines
three key capabilities: a) to publish (write) and
subscribe to (read) streams of events, including
continuous import/export of your data from other
systems; b) to store streams of events durably
and reliably ; and c) to process streams of events
as they occur or retrospectively. This method is
known as compacted log and it allows to gain and
maintain alignment with current state. The client
can achieve eventual consistency, with no need to
request a complete context, by simply subscribing
to the necessary streams.

The introduction of a Kafka broker for the
messaging of telemetry data was first presented
inl. The authors demonstrate optical network
threshold-based streaming and verification for
open DWDM systems, where through a closed-
loop system, the SDN Controller can act upon the

978-1-6654-3868-1/21/$31.00 ©2021 IEEE

observed data and determine the possible actions
to be triggered on the network elements.

Current Optical Line Systems (OLS) are be-
ing designed and developed in order to support
disaggregated optical networks to provision Net-
work Media Channels (NMC)l. Open Network-
ing Foundation (ONF) Transport API(TAPI)®! al-
lows the dynamic control and monitoring of optical
networks. Through this API, a client application
can request and modify current network status.

With the objective of increasing the ability to
provide network telemetry information based on
information streams, ONF Transport APl has
been extended to provide this functionalityl”l.
Compared to simpler notification-based current
solutions (e.g. using Yang push notifications) a
Kafka solution provides: i) flexibility, the discov-
ery allows the client to use various log strate-
gies and stream connection protocols; ii) flow
control, streaming provides engineered flow such
that peak load is averaged using mechanisms
such as back-pressure and/or selective pruning
of detalil; iii) reliability, the log-record-header pro-
vides information allowing subsequent alignment
of the notifications guaranteeing delivery of each
log record); iv) Consistency, since delivery guar-
antee ensures consistency of the client with the
view presented by the provider allowing the client
to reach eventual consistency v) High scalability
and relatively low latency.

This paper presents an implementation of ONF
Transport APl streaming mechanism using Kafka
broker, with the SDN controller acting as event
producer and enabling clients to retrieve one or
more streams, synchronize state and be informed
of network changes, alarms and notifications.
The authors experimentally validate the proposed
mechanism in an SDN OLS controller and evalu-
ate its performance in terms of latency towards

Automation App App

OLS SDN Controller

Si

Kafka broker| ‘SDN agentsu
tream discovery l§

| GET /tapi-common:context/stream-context

. Kafka

/tapi-comman:context/stream-context

OLS controller

! Subscribe stream-record

_
Stream subscription

[Euarntinatiticatic il

. stream-record (log-record)

1Event notification |-
port failure

Publish stream-record (log-record)

Metro Optical Network

Fig. 1: a) Proposed architecture using automation application, Kafka broker, and OLS controller; and b) Sequence diagram of the
proposed streaming use cases.

subscribed applications. Different types of up-
dates are evaluated, including TAPI topology el-
ements such as links and nodes as well as con-
nectivity services and connections.

Proposed Architecture

Fig. 1.a shows the proposed architecture to in-
corporate a Kafka broker for streaming telemetry.
Firstly, an OLS controller is responsible for con-
trol and management of a disaggregated optical
network consisting of several network elements,
which are controlled using an SDN agent. The
OLS controller exports its Transport API stream-
ing capabilities through its RESTCONF server.
Then, a Kafka broker is deployed in order to pro-
vide the necessary publish/subscribe mechanism
for the data streams. Finally, a client application
is deployed (consumer application) dedicated to
analytics and network automation.

The application is able to retrieve the avail-
able data stream information from OLS controller,
which refers to published data streams to the
Kafka broker, so it can request a subscription to
a data stream towards the Kafka broker. When a
new event is generated (for example a link failure
or a change in the status of optical spectrum), it is
published by the OLS controller to the Kafka bro-
ker and distributed to the subscribed application.
The (simplified) workflow is depicted in Fig. 1.b
and is detailed in the following subsections: a)
Stream discovery; b) Stream subscription; and c)
Event notification.

Stream discovery The augmentation of the
TAPI context with the so called stream-context al-
lows the client to determine what specific stream
connections are supported and available. The
analysis of the stream-context offers the ability
to identify and use various log strategies and
stream connection protocols. The interface can
offer many streams for a context. A variety
of connection protocol, content, record strategy

and storage strategy combinations might be of-
fered. The available-streams allows the provider
to report the streams that are currently avail-
able including their attributes such as connection-
address, stream-state, supported-stream-type or
connection-protocol.

Stream subscription In this use case, the au-
tomation application uses the provided endpoint
address (i.e., Kafka broker) and method to con-
nect (i.e., Kafka message brokering, using topic
TAPI). Upon connection, both the application and
the Kafka broker are synchronised and the appli-
cation buffers the log events as appropriate. At
the end of this operation the application will be
well aligned at the head of the stream.

Event notification When a new event occurs,
(e.g., detected and notified to the OLS controller
through the SDN agent present in the Network EI-
ements or generated by the OLS controller after
a network state change caused by the triggering
of a connectivity service from Operations Support
System and/or Business Support System), the
OLS controller publishes the corresponding log-
record using the TAPI topic in the Kafka broker.
Each log-record includes a header and a body.
The log-record-header provides information com-
mon to all records, such as the tapi-context, a to-
ken as an identifier of the record allowing sub-
sequent alignment, the event timestamp or the
record type (such as update, delete or tombstone
records).

Fig. 2: OLS link/node status with active connectivity services

Cumulative step histograms

g
=}
L

e
o
L

o
8
2
g
£
3
b) g 06 [link_update
2
2 T - node_update
= g
a) 2 %41 i
-name”: “local-name”,] Jj
“value": “link_1€.1.1.114:3-10.1.1.113:4 3
0.2
value-name": “cttc.gmpls.id",
“value": "10.1.1.114:3"
0.0 T T T r T T
“value-name": "1s.pcepls.lsid" 1 12 13 14 15 16 17 18
"value": "146733470674176" milliseconds
c)
value-name": "uuid",
"yalue": "24d4acal-8bb6-SBec-843b-501248683704"
Time Source Destination Protocol Length Info
REF oLs KafkaBroker Kafka 217 Kafka Produce v7 Request

0.000790174

0.003189704
9.003253273

KafkaBroker oLS Kafka
0.002701689 OLS
KafkaBroker oLS Kafka
KafkaBroker

124 Kafka Produce v7 Response
687 Kafka Produce v7 Request
124 Kafka Produce v7 Response
156 Kafka Fetch v4 Response

KafkaBroker Kafka

AutomationApp Kafka

0.015167733 AutomationApp KafkaBroker Kafka 147 Kafka Fetch v4 Request
i, 9.015743769 KafkaBroker AutomationApp Kafka 626 Kafka Fetch v4 Response
9.019997386 AutomationApp KafkaBroker Kafka 147 Kafka Fetch v4 Request

Fig. 3: a) Streaming log record example; and b) latency (in ms) for node and link updates.

Experimental evaluation

In this section, we present the experimen-
tal evaluation of the proposed streaming archi-
tecture based using an OLS controller®™ and
the ADRENALINE testbed. It has a hybrid
fixed/flexi-grid DWDM core network with 4 white-
box ROADM/OXC nodes, sliceable-bandwidth
variable transceivers (S-BVTs) and 5 bidirectional
amplified optical links of up to 150 km (610 km of
G-652 and G.655 SMF total). Links have 100GHz
CS, 50 GHz CS, or flexi-grid using commercially
wavelength WSS. OLS controller (Fig. 2) provides
ONF Transport API 2.1.3¢! photonic media layer.
The network element agents implement the front-
end towards the OLS with the OpenROADM de-
vice model or a REST interface with JSON.

A python automation application has been de-
veloped to subscribe to specific data streams and
a Apache Kafka broker has been deployed. The
automation application is able to received the log-
records and analyse theirs content.

Fig. 3.a shows a generated log-record due to a
link update. The header includes important infor-
mation on the record-type, which in this example
is of create/update, and on the tapi-context. In
the body, it can be observed the timestamp of the
event (this will later be used to measure the la-
tency). It also includes the identifier of the record
content (i.e., link), and the content itself.

Fig. 3.b shows the measured latency of two dif-
ferent event updates, link and node updates. To
measure the latency, the timestamp available on
the log-record body is used, while running the au-

tomation application in a synchronized server us-
ing Network Time Protocol (NTP). It can be ob-
served that node update latency mean is of 15ms,
while link update latency mean is of 15ms. De-
pending on the number of described information,
we observe different latencies both for link and
node updates. This will relate to the used network
topology. The introduced measured latencies are
not significant in comparison to typical connectiv-
ity provisioning times. The WireShark depicted in
Fig. 3.c shows the message exchange between
the OLS, the Kafka broker and the automation ap-
plication. It can be observed the Kafka produce
between OLS and Kafka broker, when an event is
notified. Later, Kafka broker distributes a Kafka
Fetch message towards automation application.

Conclusions

This paper has presented a novel streaming
mechanism based on ONF Transport API stream-
ing and Kafka broker usage. Through event up-
dates, context can be reconstructed by an ex-
ternal application. Latency measured has been
demonstrated to be insignificant in comparison
with connectivity provisioning times.

Acknowledgements

Work partially supported by the EC H2020
TeraFlow (101015857) and Spanish AURORAS
(RTI2018-099178-100). The authors thank the
ONF TAPI working group and Nigel Davis for
feedback and clarifications on the use of the
telemetry yang model and the streaming frame-
work.

References

(1]

[2]

(3]

[4]

(3]

(6]

(7]

R. Vilalta, C. Manso, N. Yoshikane, R. Casellas, R.
Martinez, T. Tsuritani, |. Morita, and R. Munoz, “Exper-
imental evaluation of control and monitoring protocols
for optical sdn networks and equipment [invited tuto-
rial]”, Journal of Optical Communications and Network-
ing (JOCN), vol. 13, no. 8, pp. D1-D12, Aug. 2021.

F. Paolucci and A. Sgambelluri, “Telemetry in disaggre-
gated optical networks”, in 2020 International Confer-
ence on Optical Network Design and Modeling (ONDM),
IEEE, 2020, pp. 1-3.

J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A dis-
tributed messaging system for log processing”, in Pro-
ceedings of the NetDB, vol. 11, 2011, pp. 1-7.

A. Sadasivarao, S. Syed, D. Panda, P. Gomes, R. Rao,
J. Buset, L. Paraschis, J. Brar, and K. Raj, “Demonstra-
tion of extensible threshold-based streaming telemetry
for open dwdm analytics and verification”, in 2020 Op-
tical Fiber Communications Conference and Exhibition
(OFC), IEEE, 2020, pp. 1-3.

R. Casellas, F. J. Vilchez, L. Rodriguez, R. Vilalta, J. M.
Fabrega, R. Martinez, L. Nadal, M. S. Moreolo, and R.
Munoz, “An ols controller for hybrid fixed/flexi grid dis-
aggregated networks with open interfaces”, in 2020 Op-
tical Fiber Communications Conference and Exhibition
(OFC), IEEE, 2020, pp. 1-3.

A. Mayoral-Lopez-de-Lerma, N. Davis, and A. Mazzini
(editors), “Tapi v2.1.3 reference implementation agree-
ment tr-547, v1.0”, ONF, 2020.

N. Davis (editor), “Tapi v2.1.3 reference implementation
agreement, tr-548, streaming (draft)”, ONF, 2021.

