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Abstract A method for IQ constellation analysis based on Autoencoders is proposed. Exhaustive 

numerical results show accurate physical metric prediction and large data compression, while providing 

useful model explainability. 

Introduction 

One of the most active fields of Artificial 

Intelligence (AI) application in optical networks is 
Optical Performance Monitoring (OPM) [1]. 
Specially interesting are those machine learning 
(ML)-based algorithms that combine the 
characteristics of the physical system and real-
time monitoring data to estimate a complex 
target, e.g., nonlinear interference (NLI) noise [2]. 
For these approaches to properly work, not only 
accurate ML models need to be trained, but also 
precise knowledge of input physical parameters 
is needed. Examples of physical parameters of 
optical connections are the end-to-end path 
length and the Transmitter (Tx) launch power. 
Although, some works assume that physical 
parameters remain invariable in time, considering 
them strongly increases the applicability of the 
approaches in real deployments. 

Other approaches receiving large attraction are 
those exploring deep learning techniques to 
extract information from complex, dense 
monitoring data inputs, without knowledge of the 
physical characteristics. E.g., in coherent 
systems with advanced Digital Signal Processing 
(DSP), the analysis of In-Phase and Quadrature 
(IQ) constellation diagrams as images can be 
performed by means of training Convolutional 
Neural Networks (CNN) to estimate the Quality of 
Transmission (QoT) of optical signals [3]. 

In this work, we propose a method for IQ 

constellation analysis based on Autoencoders 
(AE) [4]. AEs are a type of Deep Neural Networks 
(DNN) with two network components: the 
encoder and the decoder. Although AEs 
themselves require training, the encoder 
transforms the input in a reduced number of 
latent features in an unsupervised manner, so 
that the decoder is able to reconstruct the original 
input from the latent features space. The 
proposed AE-based method is presented and 
numerically evaluated to illustrate their potential 
to estimate physical lightpath characteristics, 
which can be afterwards used for further analysis. 
Moreover, data compression and explainability 
are intrinsic aspects of AEs that are tackled as 
key part of the proposed method. 

Scenario and approach 

The considered scenario is depicted in Fig. 1, 

where the Tx at Site A and the Receiver (Rx) at 
site B are connected through a lightpath 
established on the optical network. The AE-
based IQ constellation analysis module runs at 
the Rx site, e.g., in the node agent [5], and 
processes sets of received IQ symbols with the 
aim of analyzing their position in the constellation. 
The IQ constellation in Fig. 1 shows an example 
of processed signal for a 16QAM signal; one of 
the external constellation points (3+3i), among 
the ones that are affected the most by NLI noise, 
is zoomed in. Note that the dispersion of the 
symbols around their central constellation points 
is not uniform around I and Q axes; this is the 
resultant effect of lightpath characteristics. 

Our approach aims at extending monitoring and 
data analysis capabilities of node agents by fully 
exploiting the three main inherent characteristics 
of AEs: 1) Unsupervised feature extraction is 
used to summarize large IQ constellations down 
to their relevant few features, which are 
subsequently used to estimate physical path 
metrics (e.g., actual distance from source to 
destination) by means of simpler models. These 
metrics are afterwards processed by some 
analytics application running at the Software 
Defined Networking (SDN) controller, e.g., to 
detect whether the path fits with their expected 
physical characteristics and enforce appropriate 
countermeasures, if needed; 2) Input data 
compression provided by the latent feature space 
allows collecting and storing efficiently and 
accurately raw compressed IQ constellations, 
which can then be used for multiple purposes, 
such as training other ML models; 3) eXplainable 
Artificial Intelligence (XAI) [6] techniques can be 
applied to generate additional metrics that 
contain valuable information, which can be 
processed afterwards to increase the knowledge 
of the systems and the physical processes 
involved. 

AE-based IQ constellation analyzer 

Fig. 2 details the main processes that run in the 
proposed AE-based IQ constellation analyzer. 
Numerical labels are provided to facilitate 
following the main workflow, which consists of the 
forward and the backward analysis phases. 
Without loss of generality, we assume that before 
lightpath operation (i.e., during the 
commissioning testing phase), a pre-trained AE  



 

 

Tx Rx

Site A

AE-based 
constellation 

analysis

Site B

Optical Network Rx IQ Constellation

Q

I

3+3i

SDN Controller

Physical Path Metrics

XAI metrics

Compressed IQ 

Constellation

 
Fig. 1: Considered AE-based Analitics Architecture 

encoder

AE

[z1 .. zm]I1 .. In

Q1 .. Qn
[ ]

decoder

Latent

space

I*
1 .. I*

n

Q*
1 .. Q*

n
[ ]

Reconstructed
constellation (X*)

(a) Forward

Input sample

(n symbols)

encoder

AE

I1 .. In

Q1 .. Qn
[ ]

decoder

I*
1 .. I*

n

Q*
1 .. Q*

n
[ ]

(b) 
Backward

[z1 .. zm]

Latent

space

R(I1) .. R(In)

R(Q1) .. R(Qn)[ ]
time

m
et

ri
c thresholdInput relevance matrix

Relevance

tracking

SDN Controller

IQ const 
DB

decoder

[z1 .. zm]

Compressed 

IQ constellation
Metric

predictor

Autonomous
Path Analysis

XAI
DB

Physical
Path
Metrics

XAI metrics

Site

0

1

2

3 4

5

6

7

8

9

10

ReportingML training

 
Fig. 2: AE-based analysis of received IQ constellations 

model suitable for the main characteristics of the 
established path, e.g., length and launch power, 
is loaded [7]. Once in operation, an optical IQ 
constellation sample X with n IQ symbols is 
collected with a predefined time period (e.g., 1 
min.), decoded at the Rx side, and processed 
(labeled 0 in Fig. 2). 

After the collection of the raw IQ constellation 

sample, the forward analysis phase (block (a) in 
Fig. 2) starts by using the raw sample as input for 
the encoder (1). The encoder then transforms the 
input sample X into a sample Z in the latent 
space; Z consists of m values, each of them 
representing one feature in the latent space (2). 
The compressed sample Z is collected 
periodically by the SDN controller (3). Moreover, 
sample Z is used as input for several metric 
predictors (4), each producing one single metric 
that is sent to the controller for autonomous 
physical path analysis (5). Those predictors can 
be based on simple ML models, such as multiple 
linear regression models, that can be fitted to 
produce accurate predictions. The decoder 
completes the forward analysis phase by 
reconstructing the original sample from the latent 

feature space sample (6). 

The backward analysis phase (block (b) in Fig. 2) 
is used to generate XAI metrics. Starting from the 
decoded sample (7), relevance backpropagation 
techniques [9] are applied to compute the 
importance of each input feature into the latent 
feature space. The relevance matrix (R) with the 
same shape than that of the original sample X is 
obtained (8). Next, relevance values are grouped 
(e.g., by constellation point) and its evolution in 
time is analyzed with the objective of finding 
some pattern or to compare with some 
predefined threshold (9). All these relevance-
based data are sent as XAI metrics to the SDN 
controller for further reporting and analysis (10). 

Illustrative Results and Conclusions 

To evaluate the proposed AE-based method, a 
MATLAB-based simulator of a coherent WDM 
system has been developed to generate IQ 
constellations for a 16QAM@64GBd signal under 
different physical path characteristics. Assuming 
100 GHz channel spacing and full spectrum 
occupancy, signal samples containing 2,048 
symbols and shaped by a root-raised cosine filter 
with a 0.06 roll-off-factor are generated at the Tx 
side. Then, the signal is propagated through 
standard single mode fiber 80-km spans, 
characterized by optimal power of -1 dBm, 
attenuation factor of 0.21 dB/km, dispersion 
parameter of 16.8 ps/nm/km, and nonlinear 
parameter of 1.14 1/W/km. Spans are modeled 
by solving the nonlinear Schrödinger equation 
using the well-known split-step Fourier method, 
whereas ideal inline optical amplification is 
modelled as erbium-doped fiber amplifiers with a 
noise figure of 4.5 dB, introducing linear noise. 
Finally, at the Rx, a DSP block able to perform 
ideal chromatic dispersion compensation and 
phase recovery is considered. 

With the aforementioned configuration, signals 
for lightpaths with total distance ranging from 80 
to 2,000 km were generated. Three launch power 
scenarios were considered to generate signals 
with the same total distance but different 
characteristics by adding additional attenuation 
after the transmitter: i) optimal (0 dB), ii) sub-
optimal (-4 dB), and iii) degraded (-8 dB). Note 
that, as soon as attenuation increases, NLI 
reduces, being linear noise predominant. Thus, a 
total number of 3,000 signal samples were 
generated for training and validation purposes. 
For the sake of simplicity, hereafter we focus our 
analysis on the total path length under such 
different launch power scenarios. 

Aiming at firstly analyzing the capability of AEs for 
reconstructing input IQ constellations with high 
fidelity, Fig. 3a shows reconstruction error as a 
function of the number of latent space features 
(m). An AE with symmetric encoder and    
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Fig. 3: AE model selection Fig. 4: Forward and backward analysis Fig. 5: Relevance analysis 

decoder, each with 4 hidden layers (1024, 256, 
128, and 64 ReLU neurons) was trained with data 
from all launch power configurations. Supported 
by the results, we conclude that 32 latent features 
are enough to reach a negligible reconstruction 
error lower than 2%. Note that this allows 
achieving a compression rate of 99.2% (from 
2048 complex inputs to 32 real latent space 
features), which validates the utilization of AEs 
for high compression of IQ constellations. 

Now, we analyze the potential capacity of the 
trained AE to extract relevant information for path 
length estimation. To this aim, we plot each 
sample in the latent feature space using a 
different color for the path length (see inset color 
bar) and a different marker for the launch power. 
To simplify visualization, we projected the original 
32-dimensional feature space into just two 
dimensions by means of applying Principal 
Component Analysis (PCA) [10]. In Fig. 3b, first 
and second components are depicted; note that 
although different launch powers are clearly 
distinguishable in separable clusters, each of 
them presents a matted distribution for the 
distance. In view of this, we trained one AE per 
each launch power configuration; Fig. 3c 
presents the same PCA-based plot for the 
samples belonging to the optimal power 
scenario. In contrast to Fig. 3b, different lengths 
are now clearly separated and sorted by the 
latent feature space, which increases the chance 
of more accurate path length prediction models. 

To corroborate the abovementioned analysis, 
multiple linear regression models have been 
fitted for each of the previous approaches, i.e., 
one unique AE for all power configurations or one 
different AE for each power configuration. Each 
linear model receives as inputs the latent feature 
space sample and outputs the prediction of the 
path length. Fig. 4a shows the prediction error as 

a function of the actual path length for the two 
considered approaches. As it was anticipated, 
one single AE fails in the objective of extracting 
relevant data for path length prediction purposes, 
and it produces large errors, especially for short 
and long distances. On the contrary, using 
different AEs for power configuration allows high 
accurate path length prediction (error below 2% 
for paths larger than 200 km).  

Once forward analysis has been carried out, we 
now focus on the XAI metric performance 
evaluation by comparing two different ways for 
aggregating constellation points relevance 
computed during backward analysis: i) per-
quadrant, i.e., right-upper and left-bottom 
quadrant (Fig. 4b); and ii) per-depth, i.e., inner 
and outer constellation points (Fig. 4c). In view of 
the figures, we can conclude that the latter is 
much more informative, since the relevance of 
inner constellation points clearly reduces when 
launch power reduces. Hence, this result shows 
that XAI analysis can be potentially used for 
alternative objectives, e.g., to detect whether 
launch power is decreasing up to a limit that it can 
be considered as a degradation. 

Finally, two examples of constellations for optimal 
(Fig. 5a) and sub-optimal (Fig. 5b) scenarios are 
depicted, using a color scale for relevance 
analysis (the darker the color the more relevant). 
The three more relevant constellation points for 
each case are highlighted; results show that 
relevance analysis can be used to select few 
constellation points for further analysis, being 
that selection depending on the lightpath 
scenario. 
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