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Abstract We predict the per-channel OSNR of optical links with up to 23 EDFAs via a machine learning
model based on learned noise figures from experimental data. For a 20 span link, the error margin to
cover 99% of cases is less than 0.35 dB.

Introduction
Optical signal-to-noise ratio is an important qual-
ity of transmission metric for the operation of op-
tical networks. Accurate OSNR predictions facili-
tate the reduction of design margins and wasted
capacity. The main determinant of OSNR is
the amplified spontaneous emission (ASE) noise
generated, for example, by Erbium-doped fiber
amplifiers (EDFAs). In particular for a varying
channel count, the output power and ASE noise
of an EDFA are complicated nonlinear functions
of its inputs. The lack of accurate amplifier models
has motivated neural network (NN) modeling[1].

There are various possibilities for implementing
OSNR prediction using machine learning. The
link OSNR has been predicted directly via a NN
that takes power, gain and noise figures of all
NEDFA individual EDFAs[2] as input. The num-
ber of inputs hence scales linearly with the link
length, while the number of trainable parameters
scales even with the square of the number of in-
puts, which becomes prohibitive for long links. In
addition, the hyperparameters of the NN have to
be optimized for each link length, which is an is-
sue when training occurs under time constraints.

One can also build models that predict both
power and ASE of individual EDFAs[3] or the en-
tire link[4],[5] and compute the OSNR from these
predictions. Cascading individual NN models in
general leads to severe error amplification which
rapidly degrades prediction accuracy for longer
links. Errors in the ASE predictions are amplified
as ASE enters the OSNR in the denominator.

On the other hand, assuming amplifier noise
figures are known, the OSNR contribution of each
amplifier is a function of its input power. Denoting
by OSNRc,n the OSNR of channel c due to the
noise contribution from amplifier n, the link OSNR
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can be computed as follows[6]:

OSNRc =

(
NEDFA∑
n=1

1

OSNRc,n

)−1

, (1)

OSNRc,n =
P in
c,n

hνcBrefNFc,n[P in
c,n]

. (2)

NF[P in
c,n] indicates the dependence of noise fig-

ures on the channel loading configuration[3]. Bref

is the OSNR reference bandwidth (12.5GHz at
1550nm), h is Planck’s constant and νc is the
channel center frequency.

We propose two NN architectures for OSNR
prediction based on above equations. Specifi-
cally, the noise figures are replaced by trainable
parameters or NNs and learned from the data.

Experiment
Fig. 1 shows a schematic of the optical link, which
consists of four sections with five spans each.
The first three sections consist of six commer-
cial EDFAs, while the last one has five. The
spans in the first and last section are made of
80 km standard single mode fiber and in the sec-
ond and third of 100 km pure silica core fiber. A
Wavelength Division Multiplexing (WDM) comb of
Nc = 40 channels of 50 GHz width on a 150 GHz
grid in the C band (1525 – 1572 nm) is gener-
ated by spectrally shaping ASE noise of an EDFA
via two wavelength-selective switches (WSS) to
obtain a good extinction ratio and OSNR at the
link entrance. We operate the EDFAs at fixed
gain and tilt while randomly changing the number
and position of active channels by means of the
WSS. For the acquisition of training data, an op-
tical spectrum analyzer (OSA) records the power
spectrum before and after every EDFA via an op-
tical switch connected to the indicated locations
(dashes lines). Its output is integrated over chan-



Fig. 1: Optical link made up of 4 sections comprising 20 spans and 23 EDFAs. Dashed lines indicate locations of power
measurement (prediction) during training (operation). Square brackets indicate that the last section misses one amplifier.

nel bins during post-processing. The ASE noise
per channel is obtained by interpolating the noise
level in the empty 50 GHz slots adjacent to it.
OSNR is recorded at the end of each link section.

Machine learning models and results
All machine learning models are trained using
mean square error (MSE) loss suitable for re-
gression. We however evaluate our models in
terms of an error margin, which is more per-
tinent to system design. We define EMX as
the X-percentile of absolute values of the ra-
tios between predicted and true values in dB,
PX({|10 log10(Y pred,i

c /Y true,i
c )|, i = 1, . . . , Ns; c =

1, . . . , Nch}), where Ns and Nc are the number of
data samples and channels, respectively. It can
be interpreted as the margin required to cover the
deviation of X percent of all predictions from the
true value. We henceforth use EM99 and EM100
or MEM (maximum error margin).

We assume that during link operation, channel
power can be measured at the input of each sec-
tion, but not at the input of each EDFA. Hence to
obtain the channel power P in

c,n at each EDFA input
which enters Eq. (2), one has to rely on predic-
tions. For this purpose we train a separate model
for each link section to predict P in

c,n at each EDFA
in the respective section taking only the section
input power as input. We quantify the valida-
tion accuracy in terms of EM99 with 95% confi-
dence intervals obtained from 5-fold cross valida-
tion. For the four link sections, we obtain 0.67 ±
0.02, 0.84 ± 0.03, 1.03 ± 0.14 and 1.53 ± 0.55
dB, respectively.

We now focus on models for OSNR prediction.
Model 1 is obtained by combining equations (1)
and (2), while placing learnable parameters in lieu
of the noise figures, i.e. NFc = θNF

c . Here a possi-
ble dependence of the noise figure on the channel
loading configuration is neglected. The noise fig-
ures are learned in complete analogy to training a
neural network via mini-batch stochastic gradient
descent with batchsize Nb using the loss function

L[θ] =
1

Nb

1

Nc

Nb∑
s=1

Nc∑
c=1

(OSNRpred
c,s −OSNRtrue

c,s )2.

In model 2, we wish to account for the depen-
dence of the noise figures on the channel load-
ing configuration. While this can be accom-
plished in different ways, we found that best re-
sults are obtained by rewriting the noise figures
as NFc,n[P in

c,n] = NFc,n + ∆NFc,n[P in
c,n] in Eq. (2)

and modeling ∆NFc,n[P in
c,n] through a NN (one for

each EDFA) taking P in
c,n as input. Here NFc,n =

θNF
c,n are also learned. Another possibility would

be to replace the entire right-hand side in Eq. (2)
by a NN that models per-channel OSNR per am-
plifier instead, but we found this to give worse re-
sults. Note that for both models, backpropagation
is performed through the loss and Eqs. (1) and
(2) (through active channels only). To show the
advantage of exploiting the above equations we
compare results to those of a reference, which di-
rectly models the per channel OSNR as a function
of the power predictions: OSNRc = NNθ[P in

c,n].
It takes the input powers P in

c,n of all EDFAs and
all channels as input. Note that we do not use
ASE noise as input, so that the reference uses
the same information as the other models.

We report results for links with the number of
spans ranging from 5 to 20, i.e., with up to 23
EDFAs. Each training sample consists of the in-
put power per channel for each section and the
OSNR at the end of the respective link. Except
for the first EDFA in each section, P in

c,n is a pre-
diction of the respective power prediction model.
The training data consists of Ns = 774 sam-
ples whereof 80% are used for training and 20%
for testing. Unless otherwise stated we use 100
epochs with Nb = 128 and the Adam optimizer at
a learning rate of 0.01. We report validation re-
sults with their 95% confidence intervals obtained
from 10-fold cross validation.

For model 1, the noise figure parameters can
converge to unphysical values, leading to strong
variations across channels. This behavior is ef-
fectively suppressed by initializing all to the same
typical value of 5.5 dB (in linear units). For
100 epochs, the values typically remain close to
the initial value. For a large number of epochs
(several hundred), unphysical values may be ob-
served as a sign of overfitting. While unneces-
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Fig. 2: Error margins of the three OSNR prediction models required to cover 99% (EM99) and all predictions (MEM).

sary here, such tendency could be suppressed
in general by adding a penalty term to the loss.
Model 2 was trained for four different NN archi-
tectures with ReLU activations given by the com-
binations of 1 and 2 hidden layers (HL) and hid-
den sizes (HS) 64 and 128. The results for all
cases are similar, allowing to choose one archi-
tecture independently of the number of sections.
Here we report results for HL=2 and HS=128.
For the reference model the number of inputs
Ninp = Nc × NEDFA changes with link length, so
that the hyperparameters have to be optimized
for each case. We restrict ourselves to a max-
imum of 2 HL and simulate four combinations
of HS: (Ninp, Ninp/2), (Ninp, 2Nc), (Ninp/2, Ninp/2),
(Ninp/2, 2Nc). The optimal combination varies
with link length. The reference model typically
does not converge within 100 epochs. Since we
do not observe overfitting, we train for 500 epochs
to obtain better accuracy.

Fig. 2 summarizes the main results. Model 2
improves the margin of model 1 by at least 0.25
dB in terms of EM99 and 0.5 dB in terms of MEM,
which indicates that the dependence of noise fig-
ures on the loading configuration is significant.
The reference model is consistently outperformed
by both models. Model 2 reduces the MEM of the
reference by 1 to 2 dB. Note also the small confi-
dence intervals, indicative of a consistent predic-
tion accuracy across different training runs.

Fig. 3 shows the distribution of the ratio
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Fig. 3: Distribution of the ratio of predicted to true OSNR
values for model 2 and different link lengths.

OSNRpred/OSNRtrue for the best model 2. One
can see that the margin required to cover a fixed
percentage of the distribution is essentially inde-
pendent of the link length. This is in contrast
to cascaded predictions prone to error amplifica-
tion and is due to joint learning on two levels:
i) the power predictions are jointly learned per
section and ii) all noise figures for all amplifiers
are also learned jointly. Consistent with Fig. 2,
the distribution of the ratio is larger for the short-
est 5-span link, which might be due to the fact
that in this case all input power predictions stem
from the same underlying model and are corre-
lated, while power predictions from different link
sections are independent. Note that such corre-
lations can be learned by the underlying OSNR
prediction model, so that the learned noise fig-
ures should be interpreted as effective parame-
ters rather than physical values.

Conclusion
We introduced neural architectures to predict
OSNR from uncertain power predictions, based
on the analytical relation between OSNR and
learned amplifier noise figures. The models use
the per-channel power per EDFA but not ASE
noise power as input. The accuracy is essen-
tially independent of the link length in contrast to
approaches which cascade predictions. Contrary
to a black box approach, parametrizing noise fig-
ures through NNs significantly improves accuracy
and reduces the number of trainable parameters,
training time and maximum errors. The NN archi-
tecture can be chosen independent of link length.
For the best model 2 we further achieve a mar-
gin reduction between 1 and 2 dB compared to
the reference and a reduction in training time by
a factor of 20. For a link of 20 spans a margin
of only <0.35 dB is required to cover the OSNR
prediction uncertainty in 99% of cases. The com-
parison to the reference model illustrates that ma-
chine learning models can greatly benefit from in-
corporating available physical knowledge.
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