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Abstract: We present a novel framework that enables vendors and operators, with partial access to 

operational and monitoring features of a service, to collaboratively develop a ML-assisted solution 

without revealing any business-critical raw data to each other. We validate our proposal for a QoT 

estimation use-case.

Introduction 

Optical network automation and disaggregation 

are significantly transfroming the telecom 

ecosystem. On the one hand, network 

automation requires an unprecedented level of 

collaboration among various Network Elements 

(NE), from hardware to software, which in turn 

necessitates sharing various sets of data (e.g., 

telemetry metrics, device configurations, etc.) 

between NEs[1],[2]. On the other hand, network 

disaggregation decomposes the conventional 

black-box operational model of telecom 

infrastructure, which used to be proprietarily 

provided/operated by a single vendor, and 

enables multi-party ecosystems in which NEs 

from multiple vendors co-exist and interoperate to 

deliver an end-to-end network service[3].  

While network operators and datacom players 

are pushing for network disaggregation, many NE 

vendors are reluctant to fully support the idea, as, 

among other reasons, it requires from them to 

share their device specific data, which are 

business critical, with others. Therefore, the 

prerequisite of data sharing for network 

automation and the reluctancy of vendors to 

share their data with each other are real 

showstoppers for the realization and eventually 

the automation of disaggregated networks. This 

is a challenge for which vendors, in favour of 

network disaggregation, are seeking  accurate 

and reliable solutions[4]. 

As one of the main enablers of network 

automation, Machine Learning (ML) based 

solutions are attracting the highest attention. 

However, their development predimonantly relies 

on availability of data. It is crucial to devise a 

reliable solution for the development of ML 

models that protects the privacy of the data 

owners (i.e., vendors and operators) and prevent 

the privacy of their business-critical data to be 

compromised. In[5],[6], we have proposed and 

demonstrated a Distributed Learning Framework 
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(DLFi) that enables the development of ML 

models in multi-domain scenarios in which each 

Domain Manager (DM) has access to the full 

feature set of each data instance within its 

domain. We implemented a category of 

Distributed Learning (DL) called Horizontal 

Federated Learning (HFL), in which the datasets 

of different parties have the same features but 

they differ in data instances[7]. HFL is perfectly 

compatible with multi-domain networks, as each 

proprietary DM has access to the entire data of 

the NEs that run an end-to-end intra-domain 

lightpath. However, this assumption is not valid 

for disaggregated networks as the chain of NEs 

creating an end-to-end lightpath may belong to 

multiple vendors [3],[4].  

In this work, we propose a Vertical Federated 

Learning (VFL) solution for collaborative ML 

model development in disaggregated networks, 

in which multiple parties (e.g. vendors or an 

operator) hold different features of the same data 

instances[7]. We apply our proposal to develop a 

ML-assisted Quality of Transmission (QoT) 

classifier in partially disaggregated networks (see 

Fig 1) in which the transceivers (TRx) belong to a 

vendor different than the one of the Open Line 

System (OLS). We consider the scenarios in 

which the TRx vendor or the network operator are 

the provider of the VFL service, considering the 

ownership level of the employed features. In 

addition, we consider a scenario in which a third 

party (e.g. a software vendor different than the 

ones operating the data plane devices) that does 

not own any data develops the QoT classifier as 

 

Fig 1. Multi-vendor partially disaggregated network 
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a Virtualized Network Function (VNF). Our 

solution performs similarly good as the 

Centralized Learning (CL) baseline, while 

offering a high level of privacy protection for the 

involved vendors and operators. 

The Proposed Vertical Federated Learning 

As summarized in Algorithm 1 for the VFL, we 

consider 𝑀 = {1, … , 𝑀} remote geo-distributed 

Edge Contributor Nodes (ECNs). Each ECN 

possesses the corresponding training data sets 

and local models. There is also a Training 

Coordinator Node (TCN) that manages the whole 

training process and unlike for HFL[5] it plays an 

additional role in the model training via learning a 

global model which outputs the class posteriors[8]. 

There are two different architectures considered 

in this paper. In the first architecture as shown in 

Fig 2b the provisioning of the training data is 

carried out through only employing ECNs. While 

in the second architecture a portion of the raw 

data (i.e., 𝑠𝑖 data points as represented in Fig 2a) 

is also accessible on the TCN, see Fig 2c. The 

data located on each ECN 𝑚 comprises 𝑁 data 

instances 𝑠𝑖 and a set of non-overlapping 

features (see Fig. 2a). It is assumed that the 

training labels 𝑦𝑛 are only available on the TCN. 

Inspired by the work in[8], in order to preserve the 

data and model privacy, each ECN 𝑚 learns a 

local model parameterized by 𝜃𝑚. This local 

model maps the input data into a vector which is 

referred to as embedding ℎ𝑚. Therefore for each 

data instance there is an embedding vector 

produced on each ECN. All the embeddings are 

sent to the TCN to be concatenated as the input 

of the global model. In the second architecture 

the raw data on the TCN is also included in this 

concatenation. The obtained vector is fed into the 

global model to output the estimated class 

posteriors. Given the ground truth labels 𝑦𝑛 

during the training, the loss function ℒ for a mini-

batch of size |𝑏| is calculated as line (10) of the 

Algorithm 1. In order to minimize this loss function 

the gradients 𝑔0
𝑘 are calculated w.r.t. the global 

model parameters 𝜃0. The global model 

parameters will be updated with the learning rate 

𝜂0 according to line (12). The gradients w.r.t. the 
embeddings ℎ𝑛,𝑚 at update 𝑘 are calculated in 

line (13). These gradients are sent to their 

corresponding ECN destinations in order to 

compute the gradients w.r.t the local model 

parameters 𝜃𝑚 according to line (16). The local 

model parameters are updated using the 

equation in (17) with learning rate 𝜂𝑚. This is 

continued to reach the optimum performance 

metrics such as validation accuracy. 

Formulation of the QoT Estimation Use-case  

In order to validate the performance of the 

proposed VFL approach, we consider a QoT 

classification problem in a partially disaggregated 

scenario in which the TRxs and the NEs of the 

OLS, belong to two different vendors [3],[9]. For the 

QoT classification use-case, we use the publicly 

available dataset 01[9] generated based on the 

networking scenario described in [10]. In this work, 

we perform a lightpath-based QoT classification 

 

Fig 2. a) The feature set of every data instance Si partially owned by multiple vendors or the operator, b) our VFL architecture 
considering a   third-party VNF provider as TCN, and c) our VFL architecutre considering one of the data owners as TCN. 
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Algorithm 1: VFL algorithm. A set of 𝑀 ECNs, each worker 

𝑚 maintains a feature set 𝑥𝑖:𝑗 for all the data instances 𝑠𝑛  

while 𝑛 ∈ {1, … , 𝑁}. The corresponding label 𝑦𝑛 is only stored 

on the TCN. There are 𝑀 different local models trained on 

ECNs with parameters 𝜃1, … , 𝜃𝑀. There is a global model 

located at the TCN with the parameters 𝜃0. 𝐸 is the number of 

training epochs with learning rates 𝜂𝑚, 𝜂0 for local and global 

models,  respectively. ℎ𝑛,𝑚
𝑘 is the embedding vector 

corresponding to the data instance 𝑛 extracted using local 

model 𝜃𝑚on ECN 𝑚 at update 𝑘.   

01: for each epoch in 𝐸 while not converged: 
02:   send config (e.g., batch size) to all ECNs 
03:     for each minibatch 𝑏 in ℬ at update 𝑘:  

04:       do in parallel on each ECN 𝑚:  

05:         extract ℎ𝑛,𝑚
𝑘  using local model 𝜃𝑚

𝑘  

06:         send embedding vectors to TCN 
07:       when all embeddings received on TCN do: 

08:         concatenate vectors ℎ𝑛
𝑘 = [ℎ𝑛,1

𝑘 , ⋯ , ℎ𝑛,𝑀
𝑘 ] 

09:         compute global model output �̂�𝑛 = 𝜃0
𝑘(ℎ𝑛

𝑘) 

10:         ℒ(𝜃0
𝑘) =  

1

|𝑏|
∑ 𝑙 (𝜃0

𝑘; �̂�𝑛, 𝑦𝑛)
|𝑏|
𝑛=1  

11:         𝑔0
𝑘 =  𝛻𝜃0

ℒ(𝜃0
𝑘) 

12:         𝜃0
𝑘+1 = 𝜃0

𝑘 − 𝜂0𝑔0
𝑘 

13:         gradients w.r.t. embedding 𝑔𝑚
𝑘 =  𝛻ℎ𝑛,𝑚

ℒ(𝜃0
𝑘) 

14:         send 𝑔𝑚
𝑘  to each ECN 𝑚 

15:       do in parallel on each ECN 𝑚:  

16:         𝑔𝜃𝑚

𝑘 = 𝛻𝜃𝑚
ℎ𝑛,𝑚

𝑘 𝑔𝑚
𝑘  

17:         𝜃𝑚
𝑘+1 =  𝜃𝑚

𝑘 − 𝜂𝑚𝑔𝜃𝑚

𝑘  



task, which aims at predicting the QoT metric of 

a single Lightpath Under Test (LUT).  

Considering the structure of the lightpath based 

version of dataset 01, we define three feature 

groups: 1) TRx features, which include freq, 

mod_order, lp_linerate, 2) topology features, 

which include path_len, avg_link_len, 

min_link_len, max_link_len, num_links, 

num_spans, src_degree, dst_degree, and 3) 

network-status features, which includes the 

remaining 20 features of the dataset. Moreover, 

as illustrated in Fig 2a, we assume that feature 

group 1, group 2, and group 3 belong to the TRx 

vendor (VendorTRx), network operator, and OLS 

vendor (VendorOLS), respectively. According to 

the data ownership principles and the VFL 

architecture of DLFi, these three feature groups 

can contribute to the development of the ML-

based QoT classifier by incorporating three (or 

two) ECNs. The considered scenarios are 

detailed in Table 1. Scenarios 1 and 4 assume 

that a 3rd party, which is neither the TRx vendor 

nor the operator, develops the QoT classifier as 

a standalone VNF, similar to the one presented 

in [11]. It can also represent the option where any 

of the vendors or the operator is the provider of 

the VNF. However, scenario 2 and 3 strictly 

assume that the TRx vendor and the operator, 

are the provider of the VNF, respectively. 

Results and Concluding Remarks 

To evaluate the performance of the scenarios in 

Table 1, we randomly selected a class-balance 

subset of 100,000 data instances from the 

lightpath-based version of dataset 01[9], out of 

which 70%, 20%, and 10%, are considered for 

training, validation, and test subsets, 

respectively. We report accuracy, defined as the 

number of correctly classified data instances over 

the total number of them. We also report the total 

traffic, which measures the amount of traffic 

exchange between the involved ECNs and the 

TCN of DLFi during training. As presented in 

Table 1, different model dimensions are adopted 

according to the scenario at hand. The Adam 

optimizer with a learning rate of 0.001 is used 

with default hyperparameters as in[12] for the 

training of all the neural network models. Note 
that the learning rates 

0
,  

𝑚
 for all the local and 

global models are assumed to be equal. The 

results reported in Table 1 and Fig 3 are chosen 

according to 5 iterations of early stopping. Our 

VFL-based QoT classifier model development 

delivers models with similar accuracy as the CL 

baseline, while it protects the privacy of business-

critical data of different parties. As shown in Fig 

3b, the total traffic exchange among ECNs and 

TCN after 30,000 updates of the training is just 

around 500 MB. 

In this paper, we proposed and verified a VFL 

algorithm that enables accurate ML model 

development, in a privacy-preserving fashion, for 

partially disaggregated networks. Our solution 

can play a key role in secure exploitation of 

business-critical data of vendors for automation 

of partially disaggregated networks. 

Acknowledgement: The authors would like to 
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Table 1. The considered scenarios for our study are detailed here. The results are obtained in a virtual test-bed comprising four 
connected Virtual Machines (VM). Each one of the VMs, depending on the scenario, hosts a partial feature set. Each scenario is 
defined based on the number of contributing ECNs and the VFL architecture presented in Fig 2. Scenarios 1 and 4 are based on 
the architecture presented in Fig 2b, while scenarios 2 and 3 implement the one presented in Fig 2c. The second row 
corresponding to each scenario presents the model architecture, which is a single-layer feed-forward neural network, in terms of 
number of inputs, number of neurons of the hidden layer, and the size of the embedding layer. Scenario 4 excludes the features 
owned by vendorOLS and uses only the data provided by vendorTRx and operator. The CL option is presented as a baseline.  

 VM 1 VM 2 VM 3 VM 4 Training Validation Test 

Scenario 1 
ECNTRx ECNOLS ECNParty3 TCN 

96.30 % 97.81 % 97.66 % 
3, 32, 4 20, 32, 4 8, 32, 4  12, 512, 2 

Scenario 2 
× ECNOLS ECNParty3 TCNTRx 

96.08 % 97.23 % 97.03 % 
× 20, 32, 4 8, 32, 4 11, 512, 2 

Scenario 3 
ECNTRx ECNOLS × TCNParty3 

96.39 % 97.38 % 97.07 % 
3, 32, 4 20, 32, 4 × 16, 512, 2 

Scenario 4 
ECNTRx × ECNParty3 TCN 

95.97 % 97.22 % 97.31 % 
3, 32, 4 × 8, 32, 4 8, 512, 2 

CL 31, 512, 2 - - - 98.01 % 98.22 % 98.33 % 

 

 
Fig 3. a) Validation accuracy and b) the evolution of the total 
traffic exchange between ECNs and TCN in terms of the 
number of updates. The traffic values for scenario 3 and 4 are 
identical to scenario 2, as the difference in traffic exchage is 
due to the different number of contributing ECNs. 
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