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Abstract We propose a single-lane 212Gbps IM/DD PAM-4 system with a novel Multi-Symbol Output LSTM
equalizer that performs much better than FFE&VNE and single-symbol output LSTM, and reduces complexity
by 49.85% at the same time, and achieves similar performance with Bi-directional LSTM with around 1/4
complexity.

Introduction

With the growing demand of bandwidth and the de-
velopment of deep learning, machine learning based
equalization has been a hot topic in optical communi-
cation area. A lot of studies have shown that artificial
neural network (ANN) can be a promising solution for
nonlinear equalization tasks[1]–[6].

In order to further improve the performance, many
works have focused on improving the structure of
neural network equalizers. Deep neural networks
(DNN)[7]–[9], convolution neural networks (CNN)[10],
recurrent neural networks (RNN)[11],[12] and long
short-term memory networks (LSTM)[13],[14] have
been applied to multiple fiber-optic nonlinear equal-
ization tasks. However, signal processing tasks are
different from image/speech area. Slide window
method is used in most existing NN-based equal-
izers, and those windows are the input of the NN
models. Adjacent windows have a large amount of
the same data, but the input is different from each
other in image recognition tasks. Calculating simi-
lar inputs brings more complexity. Therefore, it’s im-
portant to make neural networks better serve Digital
Signal Processing (DSP) tasks.

In this paper, we proposed a novel NN equal-
ization technique, which reduces the complexity
of NN-based equalizers by increasing the out-
put symbols. We experimentally demonstrated a
212Gbit/s IM/DD PAM-4 system using C-band EML
transmitters and used multi-symbol output (MSO)
LSTM for equalization. Results show that the
proposed MSO-LSTM performs much better than
Forward-Feedback Equalization & Volterra Nonlinear
Equalization (FFE&VNE) and Single-Symbol Output
(SSO) LSTM, and achieves similar performance with
recently proposed Bi-directional LSTM[14] with only
around 1/4 complexity.
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Long Short-Term Memory Network (LSTM)
Long short-term memory (LSTM) neural network, is
a special kind of RNN, which solves the problem
of gradient disappearance and gradient explosion in
long sequence training. The excellent features of
LSTM make it ideal for digital signal processing tasks
in communication systems. We proposed an equal-
izer based on LSTM at receiver end, and used it for
equalizing PAM-4 signals in our system.

Fig. 1: The architecture of LSTM
Fig.1 shows the structure of LSTM, in which z

stores the weighted input data, and zf , zi and zo refer
to the gating states that control the network to forget,
to selectively memorize, and to output, respectively.

While doing equalization jobs, LSTM adopts sig-
nals block as input data, trying to calculate signal in-
tensity or symbol in target position. In offline train-
ing, the whole data is first divided into training set
and test set, and only training set participates in the
weight update of the model. The test set is only used
to evaluate the performance, so that the result is as-
sured to be without overfitting.

The total calculation amount can be expressed by
4(ne + nh) · nh · ns, in which ne denotes the length
of input data, nh denotes the number of neurons in
the hidden layer (in zf , zi, z, zo, respectively), and ns
denotes the number of groups of input data, which
means the number of slide windows in the signal se-



quence.

Multi-Symbol Output NN-based Equalization
The aim of using multi-symbol output instead of
single-symbol output is to reuse the same input sig-
nal block and reduce useless calculation, and to in-
crease the information carried by training labels and
decrease the length of training sequence. The out-
put symbols share the input taps. The amount of out-
put symbols only affects the complexity of the output
layer, while the main structure of NN never changes.
The number of sliding windows is inversely related to
the number of output symbols.

Fig. 2: The slide window scheme of (a) traditional single-symbol
output NN-based equalizers (b) the proposed multi-symbol output

neural network

The schemes of the slide window process in SSO-
NN equalization and the proposed multi-symbol out-
put NN are shown in Fig.2. It can be seen that
the number of sliding windows ns is reduced by half
when the output symbol is 2. After being processed
by LSTM, the data is flattened and feed into full-
connected network, and multi-symbol output can be
achieved by increasing the length of the output layer
and encoding the output symbols of the network.

When using cross entropy as loss function for
equalization and decision, the linear increase in the
output symbol results in an exponential increase in
the length of the output layer. For PAM4 signals,
there are 16 combinations of the two symbols. More-
over, the more edged the output symbol is in the se-
quence, the fewer effective taps the symbol corre-
sponds to. Therefore, there is trade-off in choosing
the number of output symbols. If NN is only used in
equalization but not decision, Mean square error can
be the loss function, and the length of output layer
then equals to the output symbols.

In this paper, we demonstrated a 2-symbol ouput
LSTM neural network, which has an output layer of
16 instead of 4. The training label varies from 0 to
15, which refers to symbol ’00’, ’01’, ..., etc. The
schematic diagram is shown in Fig.3(c), in which
ne = 300 is the length of input signal, nh1 refers to
the number of LSTM units, nh2 refers to the length of
the linear FC layer. The activation function we chose
is Sigmoid and the loss function is cross entropy.

Experimental Setup
The experimental setup of the proposed 212-Gb/s/λ
PAM-4 IM/DD System is shown in Fig.3(a). On the
Tx side, 106-Gbaud PAM-4 signals are generated by
a digital-to-analog converter (DAC) working at 106-
GSa/s with the 3-dB bandwidth of 40 GHz. An
EML with 3-dB bandwidth of 40 GHz and a cen-
ter wavelength of 1550 nm is operated at 25Â°C.
The 106-Gbaud PAM-4 signal from DAC is ampli-
fied by an electrical amplifier (EA) before driving the
EML. Then, the 106-Gbaud PAM-4 optical signals
are transmitted back-to-back and over 1km Non-Zero
Dispersion-Shifted Fiber (NZDSF) (GVD of 2ps/n-
m/km) with an average loss of 0.25 dB/km. Consid-
ering that the baudrate of the signal is very high, we
use NZDSF instead of regular standard fiber such as
SMF-28 to reduce fiber dispersion effect. An EDFA
preamplifier is used at the ONU before direct detec-
tion by a PIN PD. A variable optical attenuator (VOA)
is applied to adjust the received optical power (ROP)
for sensitivity measurement to test the system per-
formance. On the Rx side, the signal is detected by
a 70 GHz PD and amplified by a 60 GHz EA, and
then captured by a 160-GSa/s oscilloscope with 63-
GHz bandwidth and processed by offline DSP with
Python. The workflow of offline DSP on Rx is shown
in Fig.3(e).

Results and Discussion
To get best parameters of the LSTM equalizer, we
tested different numbers of nh1 and nh2 in Fig.3(c)
in 212Gb/s 1km transmission with -1 dBm received
optical power. The results are shown in Fig.4.

According to Fig.4, we picked the best nh1 = 300,
nh2 = 200, and designed SSO-LSTM, SSO-Bi-LSTM
and the proposed MSO-LSTM based on these pa-
rameters. To investigate the performance of the pro-
posed MSO-LSTM, we compared FFE&VNE, SSO-
LSTM, SSO-Bi-LSTM and MSO-LSTM by evaluating
the BER performances of those Equalization tech-
niques on 212 Gbps PAM4 transmission of both opti-
cal back-to-back and 1km NZDSF transmission.

It can be seen that the proposed MSO-LSTM per-
forms better than both FFE/VNE and SSO-LSTM,
and similar with SSO-Bi-LSTM. By encoding the out-
put symbols, more information is brought. Therefore,



Fig. 3: (a) the experimental setup of the 212-Gb/s/λ PAM-4 IM/DD system (b) the workflow of offline DSP on Tx (c) the schematic of the
proposed multi-symbol output LSTM (d) the optical spectra of 106 Gbaud PAM4 signal with and without pre-equalization (e) the workflow

of offline DSP on Rx

Fig. 4: The heat map of BER performance obtained by LSTM-Eq.
with different parameters

Fig. 5: BER performance of 212Gbps PAM4. (a) back-to-back,
(b) after 1km NZDSF transmission.

the cross entropy loss would reflect more informa-
tion, and the LSTM NN is better trained. 1dB gain is
achieved comparing to SSO-LSTM equalization.

We also compared the complexity of single-symbol
output LSTM and the proposed multi-symbol out-
put LSTM. We calculated Multiply-ACCumulate op-
eration (MACC) for both SSO-LSTM, SSO-Bi-LSTM
and MSO-LSTM. When ne = 300, nh = nh1 =

300 and nh2 = 200, SSO-LSTM has an operation
of 4(ne + nh) · nh + nh · nh2 + nh2 · 4 = 780800

MACC per symbol, Bi-SSO-LSTM has an operation
of 2× 4(ne + nh) · nh + 2nh · nh2 + nh2 · 4 = 1560800

MACC per symbol, and MSO-LSTM has an operation
of [4(ne+nh)·nh+nh·nh2+nh2·16]/2 = 391600 MACC
per symbol. It means we can save up to 49.85% com-
plexity comparing to SSO-LSTM, and 74.91% com-
paring to Bi-SSO-LSTM. The parameters are chosen
in search for extreme performance. When using the
algorithm in real time systems, parameter selection
needs to be more cost-effective.

Conclusions
We propose a new structure for neural network-
based equalizers that can gain performance and re-
duce complexity. We successfully achieve 212 Gbps
PAM4 IM/DD transmission under the conditions of
both back-to-back and 1km NZDSF with MSO-LSTM
for DSP at Rx end. By comparing the performance of
the proposed MSO-LSTM equalizer with SSO-LSTM
equalizer, Bi-SSO-LSTM equalizer and Volterra non-
linear equalizer, we find the proposed equalizer can
improve system performance and reduce complex-
ity by 49.85%. Our work is not limited to LSTM, and
the design of multi-symbol output can be applied to
most NN-based equalization algorithms at Rx end.
We believe next generation AI based equalization al-
gorithms will be more powerful and more suitable for
DSP tasks. This work was partially supported in part
by Chinese National key R&D projects under grant
number 2018YFB1801703.
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