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Abstract We discuss recent advances in the field of neuromorphic photonics, presenting our recent 

work and perspective towards optimizing the architecture, the enabling technology and the Deep 

Learning training models through a hardware/software co-design and co-development framework. 

Introduction 

The explosive growth of Artificial Intelligence (AI) 

computing and Deep Learning (DL) applications 

together with the growing maturity of photonic 

integration have created a new window of 

opportunity for the use of optics in computational 

tasks [1]. Exploiting photons for neural network 

(NN) hardware implementations expects to utilize 

the broadband signal carrying credentials of 

optical technologies together with their low-

energy and low-footprint tunability properties. 

These properties can boost Multiply-Accumulate 

(MAC) operations within a small energy and area 

envelope, with computational energy and area 

efficiency estimations predicted to reach a few 

fJ/MAC and >TMAC/sec/mm2, respectively[2-3]. 

Turning these expectations into a tangible reality 

requires, however, a synergistic co-design and 

co-development roadmap among all constituent 

scientific and technological fields, extending from 

underlying theory and architectures through co-

integrated enabling technology platforms, all  

properly adapted to DL training models. 

In this article, we provide a brief overview of the 

main neuromorphic photonic building blocks and 

the associated challenges, reviewing also the 

progress made along higher on-chip compute 

rates and low-power and small-size photonic 

computational elements. Motivated by respective 

advances in the field of analog electronic in-

memory computing, we present how optimized 

linear optical architectures[4] can be designed for 

empowering an efficient synergy between WDM 

and linear optics. We discuss alternative 

technology roadmaps depending on whether 

inference or training applications are targeted, 

presenting recent research attempts to transform 

plasmonics into suitable computational modules. 

We provide an overview of recent experimental 

demonstrations of feed-forward and Recurrent 

photonic neural networks performing in MNIST[5-

8] and time-series classification[10] , respectively, 

highlighting the importance of hardware-aware 

training models towards sustaining high-

accuracy values at high compute line-rates[11-14].   

 

Challenges and state-of-the-art review  

Transferring the neural network concepts and 

principles into a light-enabled platform has to 

proceed along optimization across all constituent 

NN pillars, shown in Fig. 1.  A neural layer can be 

broken down into its linear and non-linear part, 

with the linear neuron stage being responsible for 

carrying out all necessary multiplication and 

summation functionalities. Multiplication is 

usually achieved either by controllable light 

absorption/amplification[8],[15-18] or by controlling 

transmittivity within interferometric and resonant 

modules[6],[19-21] while summation is easily offered 

through combiner and multiplexing elements.  

The non-linear segment has to facilitate the 

realization of the non-linear activation 

function[8],[22-24], with typical activation functions 

favored by DL models being the ReLU, PreLU, 

sigmoid and tanh. Last but not least, migrating 

from digital to analog NN engines that employ 

light for all their constituent functions, shapes a 

new framework for DL training models. Training 

methods have to incorporate at design-phase the 

noise[12], bandwidth, processing rate, finite 

extinction ratio and bit-resolution metrics of the 

underlying photonic hardware in order to 

safeguard high-accuracy performance. On top of 

that, DL training models have often to account for 

new activations enabled by photonics that are not 

within the existing portfolio of DL models, like for 

 
Fig. 1: The basic constituent building blocks towards 
realizing optical neural networks. 
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example the sin2(x) activation that can be easily 

offered in photonic NNs via the o/e/o conversion 

stage[6],[12]. 

The development of neuromorphic photonic 

engines towards meeting the high computational 

power and area efficiency expectations has to 

proceed along the challenge of operating at 

>10 Gs/sec line-rates[1-3] within a challenging up 

to 8-bit-resolution DL environment. Allowing for 

high compute rates per axon comprises the main 

approach to compensate for the higher 

integration densities supported by electronics, 

which typically invest in their size benefits for 

increasing computational density through 

respective increases in the number of synapses 

and neurons. Figure 2(a) illustrates the compute 

rate performance values in MAC/sec/axon 

reported by the rich variety of optical neural 

network experimental demonstrations presented 

within the last five years[6-7],[18],[22],[25-33]. Although 

different architectural schemes and different 

constituent integrated photonic technologies 

have been utilized in all these demonstrations, it 

can be easily observed that incoherent or WDM 

architectures[15],[18],[22],[27],[29-30],[32-33] were almost 

constantly within the GHz clock frequency 

operational area, allowing for 10GMAC/sec/axon 

compute rates when off-chip data modulation 

was employed[18],[27],[33]. However, incoherent 

layouts typically require a different wavelength 

per single axon within a neuron, necessitating a 

high amount of wavelength resources for 

increasing fan-in and total computational 

power[33]. Single-channel optical neural networks 

can be accomplished only through coherent 

photonic interferometric layouts[6-7],[25-26],[28],[31]. 

This field has been until recently dominated by 

unitary optical linear matrix designs, where, 

however, the need for multiple cascaded stages 

of 2x2 Mach-Zehnder interferometric meshes 

enforces a tight control over individual device loss 

uniformity and phase control. This has probably 

constrained operational line-rates in the sub-MHz 

regime[25-26],[28],[31]. The on-chip transfer of a novel 

interferometric scheme that employs dual-IQ-

modulator-based computational cells, where 

weighting is accomplished through a single 

photonic module, has elevated coherent neurons 

to 10 GMAC/sec/axon compute rates[6]. More 

recently, the same architectural scheme was 

employed in a silicon-chip that uses SiGe Electro-

Absorption Modulators (EAMs) for both on-chip 

data generation and weighting purposes, 

succeeding to extend on-chip compute rates to 

32 GMAC/sec/axon[7]. Allowing for high compute 

rates in single-channel coherent layouts can 

pave the inroad towards efficiently synergizing 

WDM and coherent approaches for boosting 

performance at >100 GMAC/sec per synaptic 

element. 

Energy efficiency is mainly dictated by the power 

consumption of the weighting technology, 

assuming that a typical N-input neuromorphic 

layout requires a N2 number of weights for 

offering N2 MAC operations. As such, weighting 

elements have to align to a challenging 

framework where low power consumption, small 

footprint and low insertion losses have to be met 

simultaneously[1,2,3]. An additional critical 

parameter relates also to their reconfiguration 

time or update rate: long reconfiguration times 

suggest a limited capability for updating weight 

values, implying their use only for inference 

functionalities[1]. In case the matrix dimensions 

are higher than the dimensions of the photonic 

matrix layout or if training applications are 

targeted, weight values have to be updated at 

fast time scales, requiring sub-nsec time scales 

for their reconfiguration times. Fig. 2(b) provides 

an overview of the main weight technology blocks 

utilized so far in neuromorphic photonic layouts, 

revealing the advantages of Phase-Change-

Material (PCM) non-volatile memories for use 

within inference engines[15-17]. Training 

applications can be, however, sustained only 

through electro-optic structures that can support 

 
Fig. 2: (a) Compute rate per axon performance of WDM and 
coherent neuromorphic architectures demonstrated 
experimentally within the last 5 years, b) power 
consumption vs device length for the different optical weight 
enabling technologies, with red dots designating the 
potential for operating also in training applications.  



 

 

10’s of psec response times, like EAM[7] and 

BTO[20] waveguides, which have been so far 

utilized only in inference tasks. 

 

PNN architectures, technologies and training  

The use of electro-optic weight technologies for 

supporting fast weight update rates and training 

applications will lead to higher insertion losses 

per weighting module. This can’t be easily 

sustained by state-of-the-art coherent 

neuromorphic schemes, which rely on 

conventional unitary meshes of 2x2 

MZIs[25,26],[28],[31]. Inspired by the electronic 

crossbar architecture employed in analog 

electronic neuromorphic circuitry (Fig.3(a)), we 

have recently demonstrated a novel photonic 

crossbar design (Fig. 3(b)) that can support any 

linear transformation in the optical domain, while 

offering significant insertion loss and fidelity 

benefits compared to unitary layouts[4]. Fig. 4(a) 

and (b) depict the first silicon-based 

implementations of a single-column version of 

this crossbar[6,7], realizing a 4:1 neuron with 

thermo-optic weights[6] and a 2:1 neuron using 

EAM-based weights[7]. The same neuron 

architecture is targeted also within the H2020 

research project PlasmoniAC[34]. PlasmoniAC 

aims, however, at a neuromorphic plasmo-

photonic platform for naturally interfacing the 

upper electronic memory and control layer with 

the underlying photonic interconnect layer 

through the use of 3D co-integrated plasmonic 

weighting elements[35] (Fig. 4(c)). This research 

roadmap relies on the well-known size and 

energy benefits of plasmonics (Fig.4(d)) that may 

translate to respective advantages in neural 

layouts (Fig. 4(e)), provided that they can 

successfully migrate into computational devices.   

Realizing high-accuracy neural networks through 

imperfect photonic elements can only take place 

through a properly adapted DL training 

framework[5-7],[11-14]. The benefits of hardware-

aware training platform can be clearly highlighted 

in recent photonic RNN demonstrations[9], where 

a noisy SOA-based photonic RNN supporting 

only non-negative weight values turned into a 

high-accuracy and real-time 10 Gb/s 3- and 4-bit 

time series classifier[10]. 

Conclusions 

We reviewed our recent work in the field of feed-

forward and RNN photonic layouts, discussing 

the benefits of a hardware-software co-design 

framework and the roadmap towards energy-

area efficient PNNs with high compute rates.  

Acknowledgements 

This work was supported by the EC through H2020 

Projects PLASMONIAC (871391), SiPHO-G 

(101017194), NEBULA (871658) and by the GSRT 

through project DeepLight (4233). 

 

Fig. 3: a) the electronic crossbar layout performing as the linear neural layer stage in analog electronic neural networks, b) 
the corresponding analogous photonic crossbar[4], with the inset depicting that an optical phase shifter followed by a Variable 
Optical Attenuator (VOA) serves as the direct analogous of the electronic resistor-based weighting node. 

 

Fig. 4: First single-column photonic crossbar layouts validated experimentally as silicon-chips in a) 4:1 neuron layout with 
10GMAC/sec/axon using Si-MZM technology[6], b) 2:1 EAM-based neuron layout with 32GMAC/sec/axon[7]. c) pictorial view of 
the 3D co-integrated plasmo-photonic platform pursued in H2020 project PlasmoniAC[34,35]. (d) Plasmonics frequency and size 
positioning within a generic technology map, (e) how plasmonics can be positioned in a neuromorphic computing map when 
migrating to computational devices.  
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