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Abstract: We experimentally demonstrate a coherent SiPho neuron that relies on EAM for both on-chip 

data generation and weighting. A record-high 32GMAC/s/axon compute rate and an accuracy of 95.91% 

is reported, when the neuron is deployed as a hidden layer of a MNIST classifier neural network.

Introduction 

Recent advances in photonic integration 

technologies[1] and theoretical progress in optical 

computing architectures[2],[3], have fueled 

research interest in photonic neuromorphic 

computing, aiming to transfer the low-power and 

high-speed and density credentials of light 

manipulating components in parallel computing 

layouts[4]-[6]. Previous implementations of 

photonic neuromorphic hardware can be 

classified in two broad categories: i) in multi-

wavelength resonant layouts, where every axon 

is realized via a different wavelength[7]-[11], ii) in 

coherent layouts that use a single laser source 

and utilize the phase of transmitted light both for 

sign representation as well as for matrix 

manipulation in interferometric layouts[12]-[14]. 

Previous demonstrations of WDM architectures 

achieved up to 10 Gbaud and 91.7% accuracy for 

classifying the IRIS dataset[8]. However, scaling 

of these schemes requires a larger number of 

wavelengths and accurate resonant control[10], 

limiting their potential in high-radix layouts. 

Coherent neuromorphic demonstrations are 

usually based on the Reck linear optical circuit 

architecture[2], that requires N-1 cascaded stages 

of Mach-Zehnder interferometers (MZI) for an  

N-input linear neuron. Given the direct trade-off 

between insertion loss and modulation 

bandwidth, phase and amplitude modulation 

photonic devices[1], such layouts must balance 

between high-speed operation and achievable 

laser powers. The majority of prior 

demonstrations is opting for the latter, 

implementing MHz scale thermo-optic (TO) 

photonic devices[12],[13]. As such, operating 

speeds have been restricted so far to 10 kHz with 

reported accuracy values that can reach 90% 

when performing MNIST classification[12] and 

vowel recognition[13]. We have recently validated 

the potential for increasing on-chip compute 

rates, to up to 10 GMAC/sec/axon, in coherent 

neuromorphic photonics by adopting a novel 

architectural scheme[14] and by deploying electro-

optic and TO Si-based modulators for data 

generation and weighting, respectively[15]. 

In this paper, we report for the first time, to the 

best of our knowledge, a silicon-integrated 

coherent linear neuron (COLN) that relies on 

SiGe electro-absorption modulators (EAM)[16] 

both for its on-chip data generation and weighting 

stage and demonstrate a record-high 

32 GMAC/sec/axon compute linerate. The 

performance of the photonic neuron was 

assessed through the on-chip implementation of 

the functionality of the penultimate hidden layer 

of a neural network (NN) that classified the 

handwritten digits of the MNIST dataset. We 

report experimentally obtained accuracy of 

98.09% and 95.91% at 16 and 32 Gbaud line 

rates, respectively. Additionally, the energy 

efficiency of the constituent weighting element of 

our architecture was measured to be 

0.083 pJ/MAC, while the computational density of 

the basic X×W computational cell of our COLN 

architecture was measured to be 

0.32 TMAC/s/mm2. 

Neural network architecture and experimental 

layout 

In order to assess the perfomance of the 

fabricated COLN, we designed and trained a  

5-layer neural network, depicted in Fig. 1(a), that 

can perform image classification of the MNIST 

dataset. The gray-scale images of the dataset are 

decomposed to 1902 values that comprise the 

inputs of the input layer of the designed NN. The 

implemented NN layout is initiated by two 

convolutional layers of 32 (L#1) and 64 (L#2) 3×3 

filters, respectively, that utilize the ReLU 

activation function (AF). Three linear layers of 4, 

2 and 1 neurons follow, with the ReLU AF used 

in the first linear layer (L#3) and the sin2(x) AF 

employed in the last two (L#4 and L#5). The 

Xavier scheme with a gain of 2 was applied for 

the initialization of the network, while the training 



 

 

optimization was achieved via the Adam 

optimizer. The network was trained for the 

recognition of the digits 3 and 5 for 20 epochs, 

with a batch size of 256 samples and a learning 

rate of 10-4. 

The penultimate hidden layer, highlighted in the 

light blue box of Fig. 1(a), was implemented on 

the photonic chip and comprises 4 inputs (X1, X2, 

X3, X4) with their respective weights (W1, W2, W3, 

W4) and two outputs (Σ1, Σ2). The 4 inputs X1, X2, 

X3 and X4, are individually weighted and summed 

up in pairs of two, in order to form the two outputs 

of the neuron i.e �� = ���� + ���� and  

�� = ���� + �	�	. 

The experimental setup, which reflects the 

SiPho chip’s layout, is portrayed in Fig. 1(b). The 

light, first, splits via a 3dB coupler, into the bias 

branch (upper branch) and the nested MZI (lower 

branch). Each branch of the nested MZI 

comprises an RF driven EAM, utilized for data 

input imprinting (Xi), a DC driven EAM, for weight 

amplitude imprinting (W i) and a TO Phase Shifter 

(PS) used for sign control. The bias branch 

consists of a TO PS followed by a DC driven GeSi 

EAM. The signal exiting the nested MZI 

recombines in a 50/50 coupler with the signal that 

emerges from the bias branch prior reaching the 

receiver site. This nested MZI scheme follows the 

principles described in[14],[15] with the TO PSs of 

the inner MZI imprinting the phase of the weight 

values, with φ=0 and φ=π corresponding to the 

positive and negative weighting, respectively. 

Additionally, the constructive or destructive 

interference of the signal emerging from the inner 

MZI with the bias signal ensures that, even if the 

weighted summation has a negative value, the 

information will be preserved due to the DC offset 

that the bias signal introduces. 

In order to experimentally validate the 

performance of the integrated neuron we, 

sequentially, interfaced the two pairs of the linear 

layer L#4 of the NN into the SiPho chip. Initially, 

the first pair of waveforms emerging from the  

3rd Layer of our NN (X1, X2) were upsampled from 

1 sample per symbol (sps) to 6 and 3 sps for the  

16 and 32 Gbaud cases, respectively. 

Subsequently, they were filtered through a finite 

impulse response (FIR) filter, that 

counterbalanced the non-ideal response of the 

photonic devices and quantized with 8-bit 

resolution. The resulting signals were generated 

with a Keysight’s M8194a arbitrary waveform 

generator (AWG) operating at 96 GSa/s and fed 

via two linear RF amplifiers (SHF S804B) into the 

input Xi EAMs of the nested MZI, with a driving 

voltage of approximately 3 Vpp. At the same time, 

a light beam at λ=1555 nm was injected into the 

SiPho chip input via a TE grating coupler. Finally, 

the signal was retrieved via a 66GHz bandwidth 

real-time oscilloscope (RTO) (Keysight 

DSAZ634a) at 160 GSa/s, after being captured 

by a 70GHz PIN photodiode. The received signal 

was, then, filtered with a Gaussian filter and 

downsampled to 1sps before being fed again to 

the NN. The same procedure was followed for the 

experimental evaluation of the X3, X4 input pair of 

L#4. 

The SiPho neuromorphic chip, was fabricated 

in IMECs ISIPP50G platform, and is depicted in 

Fig. 1(c). The white rectangle of Fig. 1(c), 

highlights one basic X×W computational cell, 

comprising two EAMs[16] and a PS, for input data 

generation, weight amplitude and sign control, 

respectively. Its dimensions were approximately 

609×170 um2, while the 2-fan in COLN occupied 

a total area of 1700×480 um2. 

Experimental results and scaling analysis  

Figure 2 (a)-(d) depict the experimentally 

obtained (rendered with blue lines) X1, X2 and X3, 

X4 time traces, respectively, along with the 

corresponding expected ones (orange lines) at 

 
Fig. 1: (a) Designed neural network for MNIST classification. Photonic Layer highlighted with a light blue rectangle 
(b) Experimental setup for the evaluation of the SiPho COLN (c) Microscope photo of the integrated COLN. The elementary 
computational cell is encapsulated within a white rectangle.   
 



 

 

the rate of 32 Gbaud, while Fig. 2 (e) and (f) 

illustrate the corresponding all-optical weighted 

sums �� = ���� + ���� and �� = ���� + �	�	, 

respectively, along with the respective expected 

NN signals. In order to quantify the divergence of 

the received weighted sums with respect to the 

expected ones, we calculated their error 

distribution shown in Fig. 2 (g) and (h). It can be 

derived that both error histograms approximately 

correspond to the Gaussian distribution with 

(μ12,σ12)=(-0.03,0.13) and (μ34,σ34)=(-0.02,0.16). 

Finally, Fig. 2 (i) depicts the MNIST dataset 

classification accuracy, for the linerates of 16 and 

32 Gbaud being 98.09% and 95.91%, 

respectively, while the corresponding calculated 

SNR values were 13.74 dB and 12.51 dB. 

The energy efficiency benefits of the EAM-

based silicon coherent platform can be outlined 

by scaling the demonstrated 1×2 vector-vector 

multiplication to a full N×N vector-matrix 

configuration following our recently proposed 

optical crossbar architecture described in [17],[18]. 

Figure 3 depicts the total insertion loss (IL) and 

energy efficiency metrics as N scales from 2 to 

64, using the following experimentally verified 

values for the calculations: Xi EAMs with an IL of 

4.5 dB, a responsivity of 0.8 A/W, a capacitance 

of 20 fF[16] and a 3 Vpp driving voltage, W i EAMs 

with an insertion loss of 4.5 dB and an average 

driving voltage of 1.5 V, TO PS for weight sign 

imprinting with a 4 mW/π efficiency. The analysis 

reveals that energy efficiency approaches 

asymptotically a lower bound as N increases, 

with the lower bound value dictated by the 

0.083 pJ/MAC offered by a single weight EAM. In 

the case of a 32×32 Crossbar layout operating at 

32 GMAC/sec/axon and offering a 

>32 TMAC/sec computational power, the total IL 

would remain <30 dB and the electrical energy 

efficiency would be ~0.09 pJ/MAC. 

Conclusions 

We demonstrated experimentally a SiPho  

2-fan-in COLN, based on EAMs, as an integral 

part of a NN classifying the MNIST dataset at the 

compute rates of 16 and 32 GMAC/s/axon, 

yielding accuracy values of 98.09% and 95.91%, 

respectively. Additionally, the energy efficiency of 

the constituent weighting element of our 

architecture was measured to be 0.083 pJ/MAC, 

while the computational density of the basic X×W 

computational cell of our COLN architecture 

equals 0.32 TMAC/s/mm2. Finally, an electrical 

power consumption and loss budget analysis of a 

scaled-up version of the proposed layout 

revealed an efficiency of ~0.09 pJ/MAC and an 

insertion loss of <30 dB at a 32×32 radix.  
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Fig. 3: Insertion Loss (black solid line) and energy efficiency 
(red dashed line) versus device radix. 

 

Fig. 2: Time traces of the obtained (blue) and expected (orange) signals at 32 Gbaud: (a)-(d) when the inputs X1, X2, X3 and X4 of 
Layer #4 are interfaced to the SiPho neuron, (e),(f) after the weighted summation of the two input pairs X1, X2 and X3, X4. (g),(h) 
Error distributions of the weighted sums of the two input pairs. (i) Classification accuracy and SNR measurements at 16 and 
32 Gbaud. 
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