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Abstract We present a channel response-aware Photonic Neural Network (PNN) and demonstrate 
experimentally its resilience in Inter-Symbol Interference (ISI) when implemented in an integrated 
neuron.  The trained PNN model performs at 25GMAC/sec/axon using only 7GHz-bandwidth photonic 
axons with 97.37% accuracy in the MNIST dataset. 

Introduction 
The relentless growth of machine learning 
workloads has shifted significant research 
attention in the development of high-bandwidth 
and energy efficient computing accelerators. 
Neuromorphic photonics aim to transfer the 
energy efficiency, high-bandwidth and density 
credentials of silicon photonics, into the Deep 
Learning (DL) domain, heralding orders of 
magnitude higher computational line rates and 
energy efficiency compared to their electronic 
counterparts[1], [2]. Previous implementations of 
Photonic Neural Networks (PNN), based either 
on WDM or coherent layouts [3]–[12], were however 
limited in their computational rates, usually 
demonstrated in the kHz or MHz scale, while only 
recently the barrier of 10Gbaud was breached[10], 

[12]. 
  Deployment of PNN in higher computational 
rates, necessitates the development of deep 
learning training models that can take into 
account the physical properties of the employed 
photonic components and compensate for their 
non-ideal performance. In this context, previous 
research on DL models specifically trained for 
PNN, investigated the effect of deterministic 
noise originating from signal quantization of 
DACs and ADCs, validating the robustness of 
specially trained NNs in quantization limited use 
cases[13]. Moreover, the effect of non-
deterministic noise sources, usually manifested 
in PNNs in the form of Additive Gaussian Noise 
Sources (AWGN), was also studied in[14]–[16], 
revealing that specifically trained DL models can 
maintain their high accuracy credentials even in 
highly-noise implementations. However, another 
significant contributor that should be considered 
when designing photonic DL models, for high-
speed PNN implementations, is the channel 
response of the employed photonic components. 
Given the low-pass or non-linear response of the 
majority of currently deployed SiPho 

components, ISI is expected to significantly affect 
the PNN’s performance, when targeting high 
operating rates, in non-specifically trained DL 
models. 
  Herein, we present and experimentally 
demonstrate for the first time, to the best of our 
knowledge, a new Neural Network (NN) 
architecture that allows inclusion of the channel 
response of the photonic components in the 
training of a PNN. The proposed method was 
validated both in software and experimentally, on 
a NN trained for classifying images of the MNIST 
dataset, with its output layer implemented 
through an integrated SiPho Coherent Linear 
Neuron (COLN). The channel response of the 
modulator used both for the training and the 
inference stage had a 3dB bandwidth equal to 7 
GHz, while a comparison of the channel 
response-aware and baseline DL models at 20 
and 25Gbaud revealed accuracies of 98.51% & 
97.37% versus 90.6% & and 85.07% 
respectively. 

Concept and NN implementation 

Figure 1 (a) depicts a typical layout of an N-fan-
in coherent linear neuron, following the 
architecture proposed in [9] and experimentally 
demonstrated in [12]. The architectural layout, is 

 
Fig. 1: (a) Typical layout of an N-fan-in coherent linear 
neuron and (b) the detailed schematic of a single axon. 



composed of a single bias branch, that effectively 
safeguards negative weight imprinting, and an N 
number of axons, each consisting of an amplitude 
modulator for generating the Input data Xi 
followed by a phase shifter Si  for providing the 
weight sign information cascaded with a weight 
amplitude |Wi| modulator. As such, the basic 
weighted inputs i.e Xi*Wi, emerging at each axon 
output, are combined at the neuron’s output 
coupler with the bias branch to yield the total 
weighted sum ∑ 𝑋𝑖𝑊𝑖ே

 . All three data imprinting 
building blocks are driven by respective electrical 
driving signals, assuming static values for the 
weight values i.e 𝑊𝑖 and dynamic values for the 
input data 𝑋𝑖. 

A detailed breakdown of the noise sources 
impacting the optical signal as it traverses a 
single neuron axon is illustrated in Fig.1 (b). The 
noise that originates from the laser source is 
denoted as nlaser, while the noises coming from 
the amplitude modulator, the phase shifter and 
the weight amplitude modulator are denoted as 
nx, ns and nw, respectively. Finally, fx corresponds 
to the channel response of the input data 
modulator, that is driven by a high-speed RF 
signal and introduces ISI in the signal’s path. It 
should be noted, that the focus of this work has 
been the study of this deterministic limited 
frequency response originating noise, with 
previous works dealing mainly with the remaining 
noise contributions that can be, without loss of 
generality, simulated through AWGN[14]–[16],. 

 In order to investigate the effect of the ISI 
originating from the data input modulator’s 
frequency response and its impact on a PNN, we 
designed a NN, depicted in Fig. 2. The NN was 
trained for classifying images of the MNIST 

dataset and incorporated a specially designed 
software building block that allows the inclusion 
of the modulators channel response, during both 
the training and inference stage. The designed 
NN relies exclusively on fully-connected feed-
forward neurons and comprises the input layer 
followed by 2 hidden layers and the photonic 
output layer. The input data stream originating 
from hidden layer #2 is converted to the 
frequency domain via Real Fast Fourier 
Transformation (RFFT), and then multiplied with 
an arbitrary channel response. The resulting 
signal is then converted back to the time domain 
through an Inverse Real Fast Fourier 
Transformation (IRFFT). In this way, the 
proposed photonic NN architecture allows for the 
precise incorporation of any channel response of 
the input data modulator into the NN, enabling in 
this way channel response-aware training and 
inference. 

Experimental setup & results 

The performance of our proposed channel 
response-aware scheme was assessed through 
implementing in the PyTorch framework, the 
aforementioned NN and realizing the functionality 
of its final output layer on a SiPho COLN, 
previously demonstrated in[12].  

Two different models were evaluated both in 
software and experimentally: i) The baseline 
model, were the NN was trained using a flat 
channel response, resembling the case of a 
typically trained NN, that does not take into 
account the channel response of the photonic 
implementation. ii)The channel response-aware 
model, that incorporates the experimental 
derived transfer function of the photonic 
implementation in the training phase, using our 
specially designed block described in the 
previous section. In these experiments, we 
utilized the transfer function of the input data 
modulator of the COLN at 20 and 25Gbaud, 
depicted in the inset of Fig.3(a) which had a 3dB 
bandwidth of approximately 7 GHz in both cases. 

The NNs in both scenarios were trained for 40 
epochs, with a batch size of 100, while the Adam 
optimizer was used to optimize the weights of the 

 
Fig. 2: Designed architecture for the investigation of ISI 

effect in PNNs. 

 
Fig. 3: (a) Schematic illustration of last two layer of the proposed PNN, with the output layer realized through a SiPho COLN 

(b) Experimental setup used for the assessment of the channel-response aware scheme. 



neurons with a learning rate equal to 0.001. 
The experimental setup utilized for validating 

the performance of the NN during both scenarios, 
when implementing the last output later on the 
integrated COLN is depicted in Fig. 3(b)[12]. A 
single axon of the photonic neuron was utilized to 
sequentially imprint in ascending order the Xi 
data originating from the 2nd Hidden layer of the 
designed NN, while weighting was implemented 
offline through software. A light beam at 
λ1=1554.55nm was injected to the SiPho chip via 
a TE grating coupler. An EO-MZM Xa was used 
to optically imprint the corresponding NN data, 
while the |wa| and PSa were configured to 
produce a weighting value equal to 1. In order to 
interface the NN data to the integrated coherent 
neuron, their respective waveforms were 
upsampled from 1 to 3 and 2.4 samples per 
symbol (sps), corresponding to operational data-
rates of 20 and 25Gbaud and were then filtered 
by a Gaussian filter with σ=0.7. The resulting 
signals were quantized with 8-bit resolution 
before being uploaded to Keysight’s M8195a 
Arbitrary Waveform Generator (AWG) operating 
at 60GSa/s. The output signal and its differential 
copy originating from the AWG were then 
forwarded to two SHF100BO-ML RF amplifiers to 
drive the push-pull EO-MZM with approximately 
3Vpp. The optical signal emerging from the SiPho 
chip was converted to the electrical domain by 
the means of a PIN photodetector with 50GHz 
3dB bandwidth and was subsequently captured 
by a Keysight DSAZ634a Real Time Oscilloscope 
(RTO) with 80GSa/s and 33GHz bandwidth. The 
received signal was time-synchronized with the 
expected signal, and was then filtered with a 
Gaussian filter before being downsampled to 
1sps and forwarded back to NN. The same 
procedure was followed for the deployment of NN 
data at 20 and 25Gbaud, for both the baseline 
and channel response-aware models. 

Figures 4 (a)-(d) depict the experimentally 

obtained (red curves) versus the NN expected 
(blue curves) time traces for both the baseline 
and channel response-aware models, at 20 and 
25Gbaud, respectively. As it can be observed, 
from the captured time traces, the divergence of 
the received versus expected signals, increases 
significantly for the baseline model, as the baud 
rate increases, while a very good matching is 
achieved in the channel-aware scheme for both 
cases. This observation is quantized in the 
reported accuracies values illustrated in Fig.4 (e). 
The baseline model achieves experimental 
accuracies of 90.6% and 85.07% on the MNIST 
classification task at 20 and 25Gbaud, i.e a 
degradation of 8.3% and 13.83%, versus the 
baseline software implementation. The software 
derived accuracies for the channel response-
aware scheme reached 98.6% and 98%, a 
degradation of only 0.3% and 0.9%, respectively. 
This superior performance of the channel-
response aware scheme, was also 
experimentally validated revealing 98.51% & 
97.37% accuracies, with only 0.09% and 0.63% 
accuracy degradation versus the baseline 
models. 

Conclusions 
We presented and experimentally demonstrated 
a channel response-aware PNN designed for 
classifying the MNIST dataset. The PNN was 
trained based on the channel response of an 
integrated COLN[12] and its performance was 
experimentally validated at 20 and 25Gbaud, 
revealing accuracies of 98.51% & 97.37%, 
respectively. This work proves experimentally the 
ability of DL inspired training frameworks to 
compensate the limited channel response of 
photonic circuitry, paving the way for ultra-fast 
PNN implementations. 
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Fig. 4: Time traces of the received and NN data of the : (a),(c) Baseline model at 20 and 25 Gbaud (b),(d) Channel-aware 

model at 20 and 25 Gbaud  (e) Accuracy results for both models at 20 and 25 Gbaud 
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