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Abstract This paper proposes an optical transport network suitable for 5G and beyond systems that is 
operated through a hybrid off-line optimisation and an on-line Machine Learning scheme executed at 
the Non-real time and the Real Time Radio Intelligent Controller respectively. 

Introduction 
5G and beyond (B5G) systems are expected to 
operate in a highly heterogeneous environment 
supporting a large variety of applications with 
very stringent and greatly varying requirements in 
terms of bandwidth, latency, mobility and 
reliability [1]. These systems will need to flexibly 
interconnect a variety of network elements with 
general and specific purpose compute/storage 
resources. To achieve this, architectural and 
technological advancements such as hardware 
programmability and network softwarisation are 
needed. An example of a system that can be 
used to implement a variety of 5G and B5G 
deployment options is shown in Fig.1 These 
options combined can be used to support any 
service with highly variable Key Performance 
Indicators (KPIs) including Ultra Low Latency 
Communications (URLLC), massive Machine 
Type Communications) mMTC and enhanced 
Mobile Broadband) eMBB services. 
In this environment, transport networks 
supporting jointly fronthaul (FH) and backhaul 
(BH) services need to satisfy a set of very 
stringent requirements in terms of bandwidth, 
delay and synchronisation. In this context, optical 
networking plays a key role due to its inherent 
high bandwidth as well as low latency and 
flexibility [2]. More specifically, optical transport 
nodes (Fig. 1), through appropriate control and 

management can address a wide range of 
transport network connectivity options such as 
point-to-point, point to multi-point and multi-point 
to multipoint. These can have increased 
requirements such as connectivity for Radio 
Access Networks (RANs) comprising advanced 
wireless access technologies i.e. massive MIMO, 
Reconfigurable Intelligent Surfaces etc as well as 
resilience of critical parts of the infrastructure 
against failures. 
To achieve this, the optical transport nodes 
require a generic edge interface that enables 
seamless integration of any RAN technology with 
the transport network domain. This interface has 
to be programmable both at the transport protocol 
level and the network function level and should 
be able to host latency sensitive network 
functions. In addition, this interface needs to 
support both FH and BH services. FH services 
are supported through standardised protocols 
(e.g. CPRI, eCPRI) as well as the Open-RAN (O-
RAN) FH (O-FH) and F1 stream (defined by 
NGFI-I) to facilitate the notion of BBU processing 
functional splits and the disaggregated RAN 
architecture [3]. In accordance to this 
architecture, the remote unit (RU), the Distributed 
Unit (DU) and the Central Unit (CU) of gNodeB 
(gNB) can be either collocated or placed at 
different physical locations. Key backhaul 
interfaces including N3, N6 and N9 will need to 
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Fig 1: a) 5G Deployment Options including, the monolithic gNB deployment and the disaggregated gNB deployment, where the RAN 
function is split across different sites. b)TSON extension to support transport for 5G-RAN and 5G-CORE (UPF interfaces) 



 

 

be also supported, while compatibility with the O-
RAN radio Intelligent Controller (RIC) through its 
control and management capabilities will be also 
necessary. 
This paper proposes an optical transport network 
solution that can support the requirements of 
most advanced and flexible 5G network 
architectures and protocols.  The proposed 
solution is operated through the combination of 
an off-line optimisation scheme based on Integer  
Linear Programming (ILP) that is executed at the 
Non-Real Time (Non-RT) Radio Intelligent 
Controller (RIC) and a Machine Learning (ML) 
scheme that runs at the Real Time (RT) RIC. 
Time Shared Optical Network 
The proposed optical network solution offering 
these features is the Time Shared Optical 
Network (TSON) that has been proposed as a 
dynamic 5G transport network and was adopted 
as the future proof approach to support jointly FH 
and BH services by the 5G architecture vision of 
the 5G PPP Architecture Work Group [2]. TSON 
is an active WDM network providing high 
bandwidth and low latency connectivity in support 
of 5G services and beyond, through sub-
wavelength switching granularity and elastic 
allocation of optical bandwidth. In this context 
TSON can support the most advanced O-RAN 
implementation options mentioned above. More 
specifically, in order to address the requirements 
of 5G service slices, TSON is able to allow 
allocation of network resources in the optical 
transport taking a two-stage approach exploiting 
the features of the Non-RT and RT RIC elements 
of O-RAN. The Non-RT RIC module is adopted 
to allocate network resources and establish the 
required connectivity through the assignment of 
optical network resources (wavelengths) in a 
deterministic manner. The RT-RIC module is 
used to take real time decisions by statistically 
multiplexing flows at a timeslot level. At a 
hardware level this is achieved utilizing fast 
optical switching integrated at TSON node [4], [5]. 
Model Description  
To evaluate the performance of the architectural 
and technology approach described above and to 
propose a solution for the required control, the 
following model has been developed.  We 

consider a 5G network, modelled as an 
undirected graph 𝐺(𝒩, ℰ) where 𝒩 is the set of 
nodes and ℰ the set of links. This 5G system 
comprises both RAN and Core elements. The 
5G-RAN segment comprises a set ℛ of 𝑅 gNBs 
used to provide connectivity services for a set 𝒰 
of 𝑈 mobile users. gNBs are assumed to adopt 
the disaggregated architecture and the concept 
of functional split, according to which RUs, DUs 
and CUs are separated. In 5G networks, CUs and 
DUs can be implemented in software and run as 
Virtualized Network Functions (VNFs) in 
commercial off-the-shelf Mobile Edge Compute 
(MEC) servers. MEC servers also host Core 
elements (i.e. such as the User plane Function - 
UPF) necessary for the establishment and the 
provisioning of the end-user services (Fig 1). 
Traffic demands between the mobile elements 
are described through a demand vector 𝐷௥ =
(𝑟, 𝑑, 𝑡ௌ௥ , 𝑡ி௥ , Δ௥) with 𝑟 being the source nodes i.e. 
𝑟 ∈ ℛ, 𝑑 the destination nodes i.e a MEC server. 
𝑡ௌ denotes the earliest possible timeslot to 
schedule demand 𝐷௥ and 𝑡ி the latest possible 
time slot for 𝐷௥. 𝛥௥ is the time duration of the 
connection. The request can be scheduled 
starting with any start time slot  𝑡௜ ∈[ 𝑡ௌ௥ , 𝑡ி௥ −
𝛥௥ + 1] [6]. End-to-end connections can be 
successfully established if optical network 
resources (i.e., wavelengths, timeslots) are 
available across the end-to-end path. This 
problem can be formulated as an ILP model with 
the objective to identify the timeslots where these 
demands (slices) need be scheduled as well as 
the Routing and Wavelength Assignment (RWA) 
policy for each admitted request by maximizing a 
utility function considering both the network and 
compute elements. Given that the RWA problem 
is computationally intensive, we split it into 
simpler sub-problems. For the first sub-problem, 
initially we estimate the total number of demands 
to be served within a specific time frame. To 
forecast traffic demands per gNB we adopt the 
Gaussian Process Regression (GPR) method. 
Unlike supervised machine learning algorithms 
that can estimate specific values for every 
parameter in a function, the Bayesian approach 
determines the probability distribution function for 
these parameters (Fig.2a). Based on the 
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Fig 2 a) Estimation of Traffic Demands applying the GPR method, b) Bristol topology and c) optimal paths/wavelengths 
used for the interconnection of the edge nodes where are RUs are attached with the CUs 



 

 

forecasted demands, the Non-RT RIC controller 
solves the RWA wavelength per connection and 
identifies the optimal network path consisting of 
links and switches along which the flows are 
transferred from the gNB to the destination (i.e. 
UPF, MEC) Fig.2b shows the 5G-Bristol optical 
transport topology over which a 5G-RAN is 
deployed whereas an example of the output of 
the ILP allocating the wavelengths and 
establishing the end-to-end connections is shown 
in Fig. 2c. 
In the second stage, once the end-to-end 
connections have been established, the RT-RIC 
controller solves the optimal scheduling problem 
at timeslot level adopting ML. This is 
implemented through a scheduler based on a 
Multilayer Perceptron (MLP)-based neural 
network (NN). The MLP periodically decides on 
the most efficient resource allocation strategies 
(i.e., selection of the appropriate heuristic to be 
onboarded in the TSON edge node) taking into 
consideration availability of resources, type and 
characteristics of services and loading 
conditions. Once the MLP has been executed it 
is able to identify the appropriate timeslot 
allocation strategy. The timeslot allocation policy 
scheme is continuously evaluated and if an 
alternative option has been recommended by the 
MLP, it is onboarded at the edge node. To keep 
the analysis tractable, we assume that resource 
scheduling in the network can be performed 
using either the Best Fit (BF) or the First Fit (FF) 
algorithm. The FF has been selected as it 
requires no global knowledge and performs well 
in terms of blocking probability and it is preferred 
in practice because of its small computational 
and communication overhead, and its low 
complexity. The BF scheme introduces additional 
communication overhead and has higher 
computational cost and complexity than the FF. 
However, it slightly outperforms FF in terms of 
resource utilization. The analysis can be easily 
extended to also include additional scheduling 
policies. We implement these heuristics with the 
following constraints: (a) The set of slots used by 
a user must be contiguous on one wavelength. 
(b) Multiple requests for a given service session 

must be served over the same wavelength. To 
train the MLP-NN to identify the optimal 
scheduling policy a simulation environment has 
been developed that evaluates the performance 
of FF-based and BF-based schedulers by 
comparing their utility functions. These results 
are then used to create the dataset used for 
training of the MLP NN. The model has been 
trained for a wide range of parameters i.e. 
number of input traffic statistics and network 
configuration parameters (number of input 
wavelengths and links per node, number of 
frames/timeslots etc).  
Numerical Results 
To quantify the benefits of the developed MLP-
based resource scheduler, we repeated the 
previously described simulations. Specifically, we 
assumed two different frames with 4 and 8 
wavelengths and 200 resource slots each. In 
addition, for each frame, we performed 
simulations for 10, 20, 30 and 40 individual users 
and the average offered load ranged between 5 
and 150. For all simulation environments, the 
trained MLP periodically chose the most efficient 
resource allocation method, between FF and BF, 
taking into account the size of the frame, the 
number of users and the average load of the 
network. Then, the selected heuristic assigned 
the resources to users until the MLP decides 
again which heuristic should be used. The utilities 
of the three different resource schedulers were 
calculated after each simulation. In Fig. 3 we 
compare the utilities of the BF, FF and the MLP-
based schedulers for the 4x200 and 8x200 frame 
case, respectively. The MLP selects the heuristic 
with the best performance, in terms of utility, 
depending on the corresponding load.  
In Fig.3c, the three schedulers are compared in 
terms of weighted average utility (combining 
network and compute cost). By employing the 
MLP-based scheduler, the average utility is 
increased for every combination of network 
parameter compared with the case when either 
the BF or the FF are selelected.  
Acknowledgements 
This work has been financially supported by the 5G 
PPP EU projects 5G-COMPLETE and 5G-VICTORI. 

        
a)                                                   b)                                                                  c) 

Fig 3: a) Utility function of the BF, FF and MLP-based scheduler for the 4x200 frame, b) Utility function of the BF, FF and 
MLP scheduler for the 8x200 frame, c) Weighted utility for the BF, FF and MLP  scheduler for U {10, 20, 30, 40} and W {4, 8}. 
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