

Real Time Digital Signal Processing for Coherent Optical Communications

Mehdi Torbatian

Outline

- DSP for Coherent Fiber Optics
 - Linear channel model
 - Basic building blocks of DSP
- Offline processing
 - Single burst processing procedure
- Real time processing
 - Streaming process, OLS, OLA ()
 - Parallelization
 - Loop bandwidth
 - Jitter Budget
 - Implementation SNR
 - RF front End
 - Burst events

DSP for Coherent Fiber Optics

Fiber Optic channel

- Linear channel impairments
 - CD, PMD, SOP, PDL
 - Frequency offset, Phase noise
 - Amplified spontaneous emission (ASE) noise,
 - Implementation noise (fixed precision implementation)
 - RF front end impairments, Echo, ENOB
- Non-Linear channel impairments

Chromatic Dispersion CD

$$\begin{bmatrix} c_{II}(t) & c_{QI}(t) \\ c_{IQ}(t) & c_{QQ}(t) \end{bmatrix} \bigotimes \begin{bmatrix} \operatorname{Re}\{E_{\chi}(t)\} \\ \operatorname{Im}\{E_{\chi}(t)\} \end{bmatrix}$$

- Different frequencies of the light propagate with different group velocity in the fiber
- May spans over 100's of symbol; e.g., 1.2e-9/(1/96e9) = 115 symbols
- Nearly Static.
- Mixes I and Q channel
- Distortion in the phase, not in the amplitude → Zero forcing equalizer in frequency domain

Polarization Mode Dispersion (PMD)

- Two principal states of polarizations (PSP) may have different group delay (DGD) when propagating through fiber.
- The input SOP is changing with time and generally does not line-up with PSPs
- Thus mixes X and Y polarizations
- A few symbols worth of ISI,
- DGD and PSP are changing in ms time scale, Very dynamic
- Needs Adaptive Equalization either in time or in frequency domain

Laser Phase Noise and Frequency Offset

• Arises from both TX and Rx lasers

$$r[k] = s[k] \cdot e^{j\varphi[k]} + z[k]$$

- Is considered as a multiplicative noise in the received signal
- Is modeled as a first order Wiener process
- Is compensated in carrier recovery circut

$$\phi[k] = \sum_{n=-\infty}^{k} \phi[n]$$

TX/RX Overall DSP Flow

8

Offline Processing

- Generate Tx Signal
- Prepare samples with desired DSP
- Input sampling rate matches the DAC sampling rate
- Fill up DAC memory to avoid sending garbage data

Offline Processing Routine

Process received Samples

→ At the receiver, the captured data may be **repeated** to have a longer sequence of samples **for post-processing**

 \rightarrow * Incomplete frames may be dropped or accounted for in post-processing

Offline Rx-Side Data Processing

Measure and Correct Rx Side IQ Impairments

Resample to DSP Sample Rate (e.g. 2 x)

4 Channel Independent AGC

Coarse Frequency Offset Estimation/Correction

CD Compensation

CLK Recovery and Phase Estimation/Correction

Framing and Fine Frequency Estimate

RCOS Matched Filtering

PMD Equalizer

Carrier Recovery

TX IQ compensation

Decoding and Collect statistics

All TX samples are available

e.g., Using a MATLAB resample function

All samples are available at once

By searching a range of Freq offset. TX data is available for reference

In frequency domain. One big FFT/IFFT circuit

Estimate the delay and compensate for it. No ppm

All TX samples are available

In time or frequency domain in one shut

Symbol by symbol processing in a loop with most likely no latency, Training may be done on all symbols

Symbol by symbol processing in a loop with most likely no latency

All TX symbols are available

Likely Assumptions in Offline Processing

- MATLAB/Python is available.
- All TX symbols/samples are available.
- Laser might be shared between TX and RX: perfect synchronization
- No PPM offset, just a fixed delay between Tx and Rx signals: easy clock recovery

Real Time Processing

Example: CD Compensation

- Offline processing : $y[n] = IFFT(FFT(x[n])) \cdot H_{cd}^{-1}$
- Real time processing:
 - Data transfer is a streaming process → CD compensation in one FFT/IFFT shot is not feasible
 - Solution: limited size FFT/IFFT circuit + OLS/OLA to compensate for edge effect
 - What size of FFT/IFFT do I need? What percentage of OLS ratio do I need?
 - » What range of CD compensation do we want to support?
 - » Which combination of FFT size and OLS ratio results in the least power consumption?
 - » Is this a single carrier system or multi subcarrier system?
 - » What is the baud rate?
 - » What is the sampling rate?
 - How do we implement FFT/IFFT circuits?

50/50 OLS is NOT efficient 25/75 or 12.5/87.5 are more efficient

Filtering Long Sequences

- Linear filtering = linear convolution
- Linear convolution \rightarrow multiplication in frequency domain $x(t) * h(t) = \mathcal{F}^{-1}(X(f), H(f))$
- Discrete Fourier Transform (DFT) for samples signals

$$X(k) = \sum_{n=0}^{N-1} e^{-j2\pi k \frac{n}{N}}, k = 0, 1, \dots, N-1, \qquad x(n) = \sum_{k=0}^{K-1} e^{j2\pi k \frac{n}{N}}, n = 0, 1, \dots, N-1$$

• Circular convolution $x(n) \otimes h(n) \stackrel{DFT}{\longleftrightarrow} X[k]. H[k]$

Overlap-Save Method

How Do we implement FFT?

For power of 2 FFTs

Arbitrary FFT size $N = N_1 \cdot N_2$

- Perform N_1 DFTs of size N_2 .
- Multiply by complex roots of unity (twiddle factors).
- Perform N_2 DFTs of size N_1 .

Which Prime Factors Should we Avoid?

• FFT3

• FFT5

• FFT7

Real-Time and Offline DSP: Design Effort

Close

How many lines of code for FF-CR?

- Matlab floating point script for Offline processing: 34 lines, 774 characters
- Matlab bit-accurate fixed point, with right parallelism: 1428 lines, 38K characters
- C model for verification: 2401 lines, 72K characters 93x Offline script

- RTL (Verilog): 34 .v files, 13.7K lines, 370K characters 480x Offline script

		Word Count				?	×			
essing:	ssing:		Statistics: Pages Words Characters (no spaces) Characters (with spaces) Paragraphs Lines Include textboxes, <u>f</u> ootn			1 85 774 1,421 20 34 nd endi	1 85 774 421 20 34 I endnotes			
aranensini.	Word Count			?	×	Word	d Count		?	×
	Statistics: Pages Words Characters (n Characters (w Paragraphs Lines Include text	o spaces vith spac tboxes, <u>f</u> o) es) ootnotes	80 9,382 71,821 84,944 1,694 2,401 and end	notes	Statis Pag Wo Cha Cha Para Line	tics: es rds iracters (no iracters (wi agraphs es clude textb	spaces) th spaces) poxes, <u>f</u> ootne	47 4,450 38,108 45,523 952 1,428 otes and end	Inotes
Word Count	?	×								
Statistics: Pages Words Characters (no spaces) Characters (with space Paragraphs Lines Include textboxes, <u>f</u> o	247 45,734 370,664 s) 455,257 11,437 13,694 otnotes and er	ndnotes								

- Data rate, e.g. 200G to 800G
- Baud rate , e.g., 96Gbaud
- CD tolerance Range. e.g, 0-400,000 ps/nm
- DGD tolerance, e.g., 200 ps
- PDL tolerance, e.g., 4dB
- SOP tracking range,

- Sampling rate at different stages of Tx/Rx DSP?
- FFT/IFFT sizes at Tx/Rx?
- OLS ratios?
- α factor?
- Clock rate at each stage?
- Parallelization factor at each stage?
- Tracking speed/loop bandwidth?
- Acceptable range of latency?
- Analog front end spec?
- Jitter Analysis?
- Link budget analysis?
- Modem SNR?

Real-Time and Offline DSP: Signal Sampling Rate

• Offline code: resample(), interp1()

- Real-time design:
 - Polyphase decimation filters

– FFTs and IFFTs

Parallelization

• Parallelization is a design factor. E.g., LDPC parity check matrix

- 2th order PLL Structure
- Clock recovery loop
- PMD Equalizer Loop
- Carrier recovery loop

- Sources of Jitter
- Effect of Jitter on performance
- Jitter budget mask
- DSP circuit to tack jitter

Modem SNR

• Quantization noise and SNR degradation budget

Link Budget Analysis

