
Demonstration of Cloud-Based Streaming Telemetry Processing
for Optical Network Monitoring

Jesse E. Simsarian(1), Gurudutt Hosangadi(1), Wolfgang Van Raemdonck(2), Jurgen Gripp(3),
Matthew Nance Hall(4), Jiakai Yu(5), and Theodore Sizer(1)

(1) Nokia Bell Labs, Murray Hill, New Jersey, USA, jesse.simsarian@nokia-bell-labs.com,
(2) Nokia Bell Labs, Antwerp, Belgium,
(3) Nokia ION Optics, Murray Hill, New Jersey, USA,
(4) University of Oregon, Computer and Information Science, Eugene, OR, USA,
(5) College of Optical Sciences, University of Arizona, Tucson, AZ, USA

Abstract We present a demonstration of the processing of streaming telemetry data from an optical
network and machine-learning based video analytics on a cloud-based stream-processing platform.
Real-time processing enhances network security and reliability by combining information from diverse
sources.

Introduction

As we become ever more reliant on com-
munications infrastructures for human-to-human
and emerging machine-to-machine[1] interac-
tions, maintaining high reliability in optical net-
works is crucial. By using coherent transpon-
ders that detect the field transmitted through de-
ployed optical fibers, there are new opportuni-
ties to sense the environment[2] and monitor the
network by classifying events[3]. Furthermore,
gNMI/gRPC[4] protocols have been introduced to
efficiently[5] stream monitoring data from optical
network elements. Previously, telemetry streams
have been stored in a database and utilized in a
software defined networking controller of the op-
tical network elements[6]. However, with the mon-
itoring data being generated as streams of infor-
mation, it becomes advantageous to process the
telemetry data as event streams for flexible and

real-time analysis and alarm generation[7],[8].
With the advent of 5G networks, a massive

number of internet of things (IoT) devices such
as environmental sensors can be supported by
the wireless network infrastructure. By monitoring
the physical network infrastructure with IoT de-
vices and correlating that with telemetry streams
from the optical network elements (see Fig. 1),
additional insight on network operations can be
gained.

In this paper and demonstration, we provide
information on the methods utilized and demon-
strate the operation of the stream processing of
streaming telemetry data from an optical network
combined with video monitoring of the network in-
frastructure with machine-learning based person
identification[8]. The alarm correlations can be
used to improve anomaly detection and to pre-
vent network outages from intentional[9] or unin-

Access Cloud
OLT-DU

FTTH

Metro
network

core IP transport
network

Core Cloud

Temp., weather
storms

Optical network
performance

telemetry

Alarms

Polarization (motion) sensors

World Wide Streams

Video monitoring of
network infrastructurePower

Edge Cloud

Fig. 1: Monitoring 5G networks with diverse sensor data including streaming telemetry from the optical network.

978-1-6654-3868-1/21/$31.00 ©2021 IEEE

Fig. 2: Online tool based WWS application creation

operator

≤∫
∑in out

N M

Video

Data

Edge Cloud Core Cloud

Machines

Containers

“Processors”

Operators

Cluster

Flow

Alarms

Fig. 3: Stream processing platform

tentional events caused by human intervention.
The cloud-based World Wide Streams[10] platform
processes the data in real time for alarm genera-
tion and correlation as shown in Fig. 1.

Stream Processing Platform
World Wide Streams (WWS)[10] is a distributed
stream processing platform. WWS offers two
key features: (1) creation of dataflow-based ap-
plications in an online authoring tool, see Fig.
2, and (2) automated distribution of the dataflow
over a wide-area network. An application is com-
posed of a set of operators, each implementing a

let cam =
video_in(url)
.pipe(rescale)

cam.pipe(video_out('cam'))

cam.pipe(foreground())
.pipe(contours({}))
.pipe(robot_fence)
.pipe(video_out('out'))

robot_fence.event
.sink('event')

XStream
Functional view

graph of
operator specs

Physical query plan
graph of

fused specs

Placed query-plan
graph of
operators

Fig. 4: Deployment process

stream-processing function. These functions can
be diverse, from a basic time-window function im-
plemented in JavaScript to an object classifier for
video streams running on top of a machine learn-
ing (ML) framework like TensorFlow. This allows
the creation of services that can combine both
event stream as well multimedia stream process-
ing.

The goal of WWS is to deploy services over dis-
tributed runtimes, called processors. A WWS pro-
cessor groups similar operators that share imple-
mentation technology or runtime characteristics.
For example, a processor can be a NodeJS[11]

based event-loop optimized to run large groups
of light-weight lambda functions. At the other
end of the spectrum, another processor sched-
ules each operator on an OS process, running a
GStreamer[12] pipeline for stateful media process-
ing. The processor abstraction also allows for op-
timizations for long-lived stateful transformations
versus using a worker model to schedule scalable
stateless tasks.

As illustrated in Fig. 3, the processor itself is
deployed as a container on a cluster of machines.
Each cluster can be deployed at different loca-
tions in the network like the edge or core cloud.
WWS will interconnect these clusters into one
large distributed processing platform.

WWS applications are written in XStream[13],
a typed domain-specific functional programming
language embedded in TypeScript[14]. XStream
helps the developer in selecting and combining
the right operators into more complex stream pro-
cessing services. The XStream compiler gener-
ates a graph of operator specifications and opti-
mizes this graph by fusing operators sharing the
same technology that can coexist on the same
processor (Fig. 4). The WWS deployer places
each fused operator on a runtime in the network
and the WWS platform takes care of the data
streaming between the operators within one clus-
ter or handles the data forwarding to connect op-
erators running across different clusters. Oper-
ators can have direct communication with each
other over sockets or shared memory e.g. if they
run in the same processor. Otherwise operators
communicate via a broker, in this case the bro-
ker offers the fan out towards multiple consumers
and provides loose coupling between operators.
WWS uses RabbitMQ[15] as the event broker and
a RTMP[16] and WebRTC[17] media server for me-
dia streams.

Fig. 5: Processing pipeline for person detection

Video Stream Processing
The role of the video stream processing pipeline
is to process sensed images from the IP camera
overlooking the monitored area, detect persons
in the scene at any point in time and then report
these events back for use by the overall system.

We rely on the WWS platform to manage the
streaming between camera, video analytics and
the rest of the system. The details of the video
stream processing pipeline are shown in Figure 5.
Specifically, once WWS receives a camera im-
age, it uses a request-reply protocol based on Ze-
roMQ to request analysis on the image. The infor-
mation sent comprises of the image and a meta-
data template for the analytics pipeline to fill in
case of a person detection. The analytics pipeline
uses a two-stage deep learning network (mask-
rcnn-resnet-101)[18]. The first stage (region pro-
posal network) of this machine learning network
proposes regions in the image where objects of
interest are likely to be found. This is followed
by a second stage (classifier) where a region is
classified as ”person” if the features extracted for
this region matched apriori learned ”person” fea-
tures. This classification leads to a ”person de-
tection” event which is relayed back to WWS via
a reply message after filling in information such
as bounding box and contour locations of the per-
son in the metadata template that was previously
received along with the image. Note that both

stages share a common block (labeled ”Shared
Layers” in Figure 5) for feature extraction.

We implemented the ML in Python, Keras and
TensorFlow using the code at[19] as a starting
point. This is Dockerized[20] and run on a GPU to
provide a person-detection microservice to WWS
via a ZeroMQ socket as described in previous
work[8].

Demonstration
We present a demonstration using a network
testbed located at Bell Labs in New Jersey con-
sisting of six commercial Nokia 1830 PSS opti-
cal nodes with flexgrid reconfigurable optical add
drop multiplexers and 2200 km of fiber[8]. We
monitor the performance metrics of seven Nokia
flexible line cards with variable bitrate operated
at 200 Gb/s with 8QAM modulation format using
gNMI with 10 s period. By attenuating the opti-
cal power of one of the wavelengths, the result-
ing signal-to-noise ratio degradation causes the
preFEC bit error ratio (BER) to rise. We simul-
taneously monitor one of the terminating nodes
of the wavelength with a camera that utilizes the
machine learning based person identification pro-
cess running on WWS. We detect point anoma-
lies of the BER by using stream processing of
the optical telemetry data stream using a time-
window detection method on the WWS platform.
The mean, µ, and standard deviation, σ, of the
previous 29 data points are calculated over the
window, and z(t) of the most recent data point,
d(t), is given by z(t) = (d(t)−µ)/σ. Anomalies in
the BER are alarmed when z(t) crosses a thresh-
old, zth.

We correlate the person detection alarm with
BER anomaly detection processes on wave-
lengths that terminate at the monitored node. Due
to the different periods of the person detection
measurements and optical telemetry stream up-
dates, we resample the streams before generat-
ing the correlation alarm[8].

Conclusions
We demonstrate a scalable and cloud-based
stream processing for the flexible generation and
correlation of optical alarms with ML-based per-
son detection to improve network awareness and
give insight to operators when optical networks
are impaired. Employing IoT devices external to
the transport system broadens our view of the
network physical environment beyond information
available from the optical network elements.

References
[1] N. Benzaoui, “Deterministic latency networks for 5G ap-

plications”, in Proc. ECOC’20, Brussels, Belgium, Dec.
2020.

[2] Z. Zhan, M. Cantono, V. Kamalov, A. Mecozzi,
R. Müller, S. Yin, and J. C. Castellanos, “Optical
polarization-based seismic and water wave sensing
on transoceanic cables”, Science, vol. 371, no. 6532,
pp. 931–936, 2021.

[3] K. Guan, J. Simsarian, F. Boitier, D. Kilper, J. Pesic,
and M. Sherman, “Efficient classification of polarization
events based on field measurements”, in Proc. OFC’20,
San Diego, CA, Mar. 2020, Th3D.7.

[4] (2021), [Online]. Available: https://www.grpc.io/.

[5] R. Vilalta, N. Yoshikane, R. Casellas, R. Martı́nez, S.
Beppu, D. Soma, S. Sumita, T. Tsuritani, I. Morita, and
R. Muñoz, “GRPC-based SDN control and telemetry
for soft-failure detection of spectral/spacial superchan-
nels”, in Proc. ECOC’19, Dublin, Ireland, Sep. 2019,
pp. 1–4.

[6] F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi,
“Network telemetry streaming services in SDN-based
disaggregated optical networks”, J. Lightwave Technol.,
vol. 36, no. 15, pp. 3142–3149, 2018.

[7] A. Sadasivarao, S. Syed, D. Panda, P. Gomes, R.
Rao, J. Buset, and L. Paraschis, “Demonstration of ex-
tensible threshold-based streaming telemetry for open
DWDM analytics and verification”, in Proc. OFC’20, San
Diego, CA, Mar. 2020, M3Z.5.

[8] J. E. Simsarian, M. N. Hall, G. Hosangadi, J. Gripp,
W. V. Raemdonck, J. Yu, and T. Sizer, “Stream pro-
cessing for optical network monitoring with streaming
telemetry and video analytics”, in Proc. ECOC’20, Brus-
sels, Belgium, Dec. 2020, Tu2K–1.

[9] T. Hughes, Attacks show fiber optic internet cables vul-
nerable, https://www.usatoday.com/story/news/
2015/09/16/attacks-show-fiber-optic-internet-

cables-vulnerable/32502785/, 2015.

[10] (2021), [Online]. Available: https : / / www .

worldwidestreams.io.

[11] (2021), [Online]. Available: https://nodejs.org/en/.

[12] (2021), [Online]. Available: https : / / gstreamer .

freedesktop.org/features/.

[13] (2017), [Online]. Available: http://soft.vub.ac.be/
~tvcutsem/talks/presentations/XStream_ifip17.

pdf.

[14] (2021), [Online]. Available: https : / / www .

typescriptlang.org/.

[15] (2021), [Online]. Available: https://www.rabbitmq.
com/.

[16] (2012), [Online]. Available: https : / / wwwimages2 .

adobe.com/content/dam/acom/en/devnet/rtmp/

pdf/rtmp_specification_1.0.pdf.

[17] (2021), [Online]. Available: https://webrtc.org/.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask
r-cnn”, in Proc. IEEE International Conference on
Computer Vision (ICCV’17), Venice, Italy, Oct. 2017,
pp. 2980–2988.

[19] W. Abdulla, Mask r-cnn for object detection and in-
stance segmentation on keras and tensorflow, https:
//github.com/matterport/Mask_RCNN, 2017.

[20] (2021), [Online]. Available: https : / / www . docker .

com/.

