

978-1-6654-3868-1/21/$31.00 ©2021 IEEE

DDX Add-On Card: Transforming Any Optical Legacy Network
into a Deterministic Infrastructure

Nihel Benzaoui(1), Guillaume Soudais(1), Olivier Angot(2), Phillipe Robineau(2), Sebastien Bigo(1).

(1) Nokia Bell Labs, Nihel_djoher.benzaoui@nokia-bell-labs.com
(2) Nokia, Route de Villejust, 91620, Nozay, France

Abstract We propose a novel slotted, scheduled, and synchronous add-on modular card to deliver data

with truly deterministic performance over legacy optical networks. We achieve ultralow 50ns jitter and

25μs latency end-to-end for edge-cloud scenarios.

Introduction

Next-generation applications for new real-time

user experiences (e.g., augmented reality) or for

industry automation (e.g., industry 4.0) will

benefit from processing in the edge cloud

deployed for 5G networks. Part of these

applications, which we refer to as time-critical,

require strict deterministic guarantees from the

network. They expect a high quality of service

(e.g., fixed and low latency, ultralow jitter, ultra-

reliability) end-to-end from the application source

(e.g., a machine) to its data center processing

unit (Fig. 1), regardless of the traffic load.

The typical approaches to engineer Quality of

Service (QoS) in legacy optical switched

networks such as traffic prioritization and packet

pre-emption can, at best, achieve determinism for

a single application flow, but performance dilutes

as the number of flows increases. While time-

critical applications typically require sub 100ms

latency and sub 100ns jitter, legacy networks can

hardly achieve better than a few 100ms of latency

and a few 10μs of jitter per node, both

accumulating proportionally with the number of

hops. Recent standards proposed alternative

approaches for determinism [1]-[6]. However, they

have failed to capture broad support, mainly

because of their complexity, of scalability

limitations, and of the prohibitive cost of renewing

the entire infrastructure for time-critical

applications, which are predicted to be just a

small fraction of the edge cloud traffic.

In this paper, we propose Deterministic

Dynamic X (DDX), an add-on card capable of

migrating any legacy optical switched network

into a deterministic infrastructure. The DDX add-

on card is dimensioned to handle only time-

critical traffic, while the remaining traffic is

managed exclusively by the legacy switching

nodes, thereby enabling pay-as-you-grow

capacity upgrades towards delivering

deterministic performance. Next, we introduce

the DDX concept, describe our prototype, and

integrate it into a proof of concept network where

we demonstrate per application, deterministic,

end-to-end paths (sub 25μs latency and 50ns

jitter) over multi-hop legacy networks.

DDX card concept and implementation
A DDX card should be deployed at every first and
last switching nodes of a deterministic path
(Fig.1), and optionally at intermediate nodes if re-
aggregation is preferred for greater network
efficiency. The DDX add-on card performs the
following functions 1) to pre-aggregate time-
critical traffic sharing a common in a deterministic
way, upstream of the switching node 2) to
frame/unframe time-sensitive data for
deterministic transport into slotted, scheduled,
and synchronous packets, compliant with
standard packet (Ethernet) protocols. All
switching nodes along the deterministic path are
then shortcut by bridging a specific ingress and
egress switching port, such that time-critical
packets are isolated from any internal contention.
For time-critical applications, the switching node
is seen as a wire (Fig. 2). Techniques to build
dedicated or shared bridge are found later.

Fig. 1 DDX cards are inserted at first/last nodes of every deterministic
path in an edge cloud network

Fig. 2 Deterministic pre-aggregation and switch
bridging

Bridge

T
im

e
 C

ri
ti

c
a
l
C

li
e
n

ts

Buffer Port

DDX

(ingress)

Slotted and

Scheduled

transmission

C
li
e
n

ts

C
li
e
n

ts

Jitter Comp.

Clock align.

Port

D
e

st
in

a
ti

o
n

 c
li
e
n

ts

Synchronous

transmission

Switching

Matrix

Switching

Matrix

Port

Port

Port

Port

Port

PortPort

Port

Port

Port

Port

Port

Port

DDX

(egress)

First switching node Last switching node

Bridge

We implemented a DDX add-on card
prototype on a HTG930 FPGA with eight client
ports and two-line ports at 10Gb/s. We
encapsulate the client traffic into 1.2μs (1504B)
slots and used a centralized controller to
schedule slots over a cyclic window of eight slots
(9.6μs) (customizable parameter), so as to
guarantee bandwidth for a duration just long
enough to host the time-sensitive flow. At the
egress DDX card, we de-capsulates the client
traffic, queue it per destination and send it to the
corresponding client. This part of the
implementation can be considered as common to
any TDM network, including to our previous work
in [7]. The innovations of the DDX card reside in:

We define a new slot framing. To prevent
alteration of DDX slots by nodes along the
deterministic path, we mimic an Ethernet frame
by shaping the slot header in an Ethernet format.
We hide the control information related to DDX in
the payload perceived by the switching node
(1504B/1480B overhead). We generate full slots
only when necessary. If a slot has no traffic to
carry, then only a control slot of 64B is sent
(header + control info. + padding to reach
minimum Ethernet frame size) as reported in Fig.
3, so that the free room between slots can be
reused for non-time critical traffic, while sharing
the egress port capacity of the switching node.

We use a periodic pacing control
sequence, instead of harder-to-achieve tight
clock synchronization, as time reference, for
intermediate DDX add-on cards to drop or add
their own slots and reaggregate traffic. We insert
the pacing sequence as part of the control
information at the first ingress DDX card and
propagate it all along the path.

We apply an original jitter compensation
mechanism to mitigate latency variations
experienced along the path. At the ingress DDX
card, we count the idle symbols (20b, equivalent
to a 6.7ms separation) between packets
belonging to the same flow. We send these
counters as part of the control information to the
egress DDX card that recreates the original
spacing between packets by buffering for the
duration of the concatenated idle symbols.

We virtually re-align clocks of each pair of
ingress/egress DDX add-on cards, as shown in

Fig. 4. With stability at +/-100ppm, the 6.4ns
cycles of the clocks at both ends can slightly drift
and the re-creation mechanism of the spacings
between packets may turn inaccurate. To correct
and track the clock mismatches, we configure the
ingress DDX card to send timestamps (every slot)
to the egress DDX card, where we store the
difference between the received timestamp and
the local time and average this difference over a
rolling period of 5ms. After comparing values
(diff= avg1-avg2) every 64ms, as shown in the
measurements of Fig. 4, we virtually accelerate
or decelerate (idle symbols counter +/-diff) the
counting frequency at the egress DDX card. We
track and cancel any time slope, as if the clock
frequencies at both ends were matching down to
0.1ppm precision (64ms= 6.4ns/0.1ppm).

Proof of concept

We now integrate our prototype DDX in a proof of

concept network, where eight flows with different

service level agreements in two groups, four real-

time ones (1Gb/s on-off, e.g., eCPRI) with

relatively relaxed performance expectations

(~100ms latency) and four time-critical ones

(1Gb/s constant bit rate-CBR, e.g., loop control of

a robot). We reserve one slot of the cyclic

schedule for each flow of the latter group. The

eight flows travel into two switching nodes (1a

and 2a in Fig.1) before reaching an edge data

center. The nodes are typically Ethernet switches

or IP routers. We use a 12x10Gb/s Ethernet

switch originally set in a basic configuration

without QoS management, a typical configuration

where unregulated contention occurs. We

generate the flows and measure latencies using

a Spirent Tester exhibiting 10ns precision. We

compare the latency and jitter of time critical flows

with and without the DDX add-on cards,

performing aggregation and adaptation of these

flows to deterministic transport.

In a first scenario, we make a dedicated

bridge between the switch ingress port

(connected to the DDX card) and the egress port,

using a Virtual Local Access Network (VLAN)

marking data from the DDX card with a tag. Note

that such VLAN creation is available in any

packet switch/router. Only packets carrying the

Fig. 3 DDX (full/control) slot structure

Fig. 4 Clock mismatch evaluation Fig. 5 experimental set-up

H
e
a
d

e
r

Payload

1480B

H
e
a
d

e
r

PayloadPayload FreeFree

Full DDX slot DDX control slots (64B)

H
e
a
d

e
r

H
e
a
d

e
r

C
o

n
tr

o
l

C
o

n
tr

o
l

C
o

n
tr

o
l

C
o

n
tr

o
l

Payload

1480B

24B

-20

-15

-10

-5

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000

In
g

re
s
s
 D

D
X

 c
a
rd

 T
im

e
s
ta

m
p

–
e
g

re
s
s
 D

D
X

 c
a
rd

 l
o

c
a
l
ti

m
e

(6
.4

n
s
 c

lo
c
k
 t

ic
k
)

Measurements obtained each time slot (1.2µs)

Slope using

linear regression

Avg1

over 5ms

Avg2

over 5ms
x

x

Calculated slope

diff = (avg2- avg1)

64ms

VLAN tag are allowed to the switch egress port.

The remaining non-time critical traffic travels to

another egress port of the switch. In Fig. 6a, we

report the probability distribution of latencies of

time critical flows with and without the DDX add-

on cards used for aggregation and adaptation of

these flows to deterministic transport. We

observe that the DDX card reduces drastically the

latency (by 94% on the average and by 98% on

the maximum) and its variation (by 99% on the

average and maximum), when compared to

legacy networking. We attribute the additional

latency with the DDX card from the spreading of

one packet over two reservation cycles. Overall,

using the DDX card we record <20μs latency and

ultralow jitter <40ns, hence exceeding the target

performance for time-critical flows.

In a second scenario, we make a shared

bridge by turning on preemption (available as an

option in some switches, here a Nokia 1830TPS).

While bridging the switch ingress port connected

to the DDX card with the egress port, we

configure the ingress port as express, so that it

interrupts (pre-empts) the transmission of any

other non-time critical packet that would share

the same egress port. This allows for non-time-

critical traffic to travel over the bridge by filling the

space left (1440B) when a slot is empty, only

filled with control data (see Fig. 3). Since only

~5% overhead is added by the control slots, in a

limit of 95% load, no extra port is needed to carry

regular traffic. Note however that packet pre-

emption is not available in all legacy products.

In Fig. 6b, we compare the latency distribution

of time-critical packets using a VLAN-based

bridge vs. packet pre-emption-based shared

bridge. Despite sharing of the egress port with

non-time-critical traffic, determinism is

maintained with almost unchanged 18.36μs

average and 18.43μs max latency and jitter does

not exceed 100ns. Note that this is obtained at

the expense of a 60% increase in latency for non-

time-critical traffic. When the path is extended

with two more switching nodes, we measure

larger latencies (Fig. 6c) but by no more than the

delay of two additional store and forward

operations, while jitter only slightly increases by

20ns with shared bridge and by 10ns with

dedicated bridge. Determinism is preserved in a

multi-hop path for both bridge types.

Legacy TDM networks such as OTN are

known for deterministic data delivery, but

generally rely on layer 2 switching (Ethernet) for

aggregating small data streams, which results in

the loss of deterministic guarantees. We propose

now to replace layer 2 switches by DDX cards.

To evaluate the benefits, we generate three

competing flows (one 1Gb/s time-critical CBR

and two 1Gb/s non-time-critical on-off flows),

which we send across 2 OTN nodes, using either

Ethernet switches or using deterministic pre-

aggregation with the DDX card. Fig. 7a shows the

measured latency distribution of time-critical

packets. Compared to Ethernet, the DDX card

significantly reduces latency (<20.24µs) and jitter

(<40ns) (Fig 7b). Overall, DDX add-on card

extends the deterministic performance of OTN to

low granularity flows at the client.

In a final experiment, we assess the

advantages of using DDX card through two

Ethernet switches over two OTN nodes, in order

to showcase an end-to-end, multi-technology

proof of concept. The measurements, reported in

Fig. 7c, show end-to-end latencies no higher than

25µs and jitter smaller than 40ns, largely meeting

deterministic performance targets.

Conclusion

We proposed and demonstrated a new concept

to allow legacy optical networks to deliver record

end-to-end jitter (<100ns) and low ultra-low

latency (<100µs latency excluding fiber

propagation). Only two modular add-on cards at

both ends of a multi-hop, multi-technology

network are needed to deploy a deterministic

path. DDX can be the enabler of high-value

businesses employing time-critical applications.

Fig. 6 Latency PDF using legacy network w/o DDX card (a), using a dedicated vs. shared bridge (b), for 2 hops and 4 hops (c)

Fig. 7 Latency PDF (a) using OTN with Ethernet switch vs. with DDX card (zoom in (b)), c) for end to end (TPS+OTN)

0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000 1200

P
D

F

(Avrg, Max) jitter = (9.12, 49.89) µs

Max latency

= 936.49µs

Avrg latency

= 338.04µs

Latency (µs)
0

0.1

0.2

0.3

18 18.2 18.4 18.6

(Avrg, Max) jit ter

= (0.01, 0.1) µs

Avrg latency

= 18.36µs

Latency (µs)

Max latency

= 18.43µs

(Avrg, Max) jit ter

= (0.01, 0.04)µs

Max latency

= 18.15µs

Avrg latency

= 18.09

Dedicated bridge Shared bridge

0

0.1

0.2

0.3

0.4

0.5

22.5 23 23.5 24 24.5

Max latency

= 24.02µs

Avrg latency

= 23.91µs
(Avrg, Max) jitter

= (0.01, 0.12)µs

(Avrg, Max) jitter

= (0.01, 0.05)µs

Max latency

= 22.73µs

Avrg latency

= 22.67µs

Dedicated bridge Shared bridge

Latency (µs)

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

(Avrg, Max) jitter = (2.5, 15) µs

Max latency

= 44,64µs

Avrg latency

= 26.90µs

Latency (µs)

P
D

F

0

0.1

0.2

0.3

0.4

0.5

20.19 20.2 20.2120.2220.2320.2420.25

Avrg latency

= 20.21µs (Avrg, Max) jitter

= (0.01, 0.04)µs

Max latency

= 20.25µs

Latency

(µs)
0

0.1

0.2

0.3

0.4

24.75 24.8 24.85 24.9

Max latency

= 24.89µs

Avrg latency

= 24.83µs

(Avrg, max) jitter

= (0.01, 0.04)µs

Latency (µs)

References

[1] L. Lo Bello et al., "Schedulability analysis of Time-
Sensitive Networks with scheduled traffic and
preemption support," Journal of Parallel and
Distributed Computing, vo. 144, 2020.

[2] B. Varga et. al., "DetNet Data Plane: IP over IEEE
802.1 Time Sensitive Networking (TSN)," February 19,
2021. Available: https://datatracker.ietf.org/doc/draft-
ietf-detnet-ip-over-tsn/

[3] B. Varga et. al., "DetNet Data Plane: IEEE 802.1 Time
Sensitive Networking over MPLS," February 19, 2021.
Available: https://datatracker.ietf.org/doc/draft-ietf-
detnet-mpls-over-tsn/

[4] N. Finn, "Time-sensitive and Deterministic Networking
Whitepaper," IEEE Mentor User Documentation, July
2017. Available:
https://mentor.ieee.org/802.24/dcn/17/ 24-17-0020-
00-sgtg-contribution-time-sensitive-and-deterministic-
networking-whitepaper.pdf

[5] N. Finn, P. Thubert, B. Varga, J. Farkas, "Deterministic
Networking Architecture," IETF draft, Oct. 2019.
Available: https://tools.ietf.org/html/rfc8655

[6] S. S. Craciunas, R. S. Oliver, M. Chmelík, W. Steiner,
"Scheduling real-time communication in IEEE 802.1
Qbv time sensitive networks", in Proc International
Conference on Real-Time Networks and Systems,
2016.

[7] N. Benzaoui et al., "Deterministic Dynamic Networks
(DDN)," Journal of Lightwave Technology, vol. 37, no.
14, pp. 3465-3474, 15 July15, 2019.

