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Abstract We propose a novel slotted, scheduled, and synchronous add-on modular card to deliver data 

with truly deterministic performance over legacy optical networks. We achieve ultralow 50ns jitter and 

25μs latency end-to-end for edge-cloud scenarios. 

Introduction 

Next-generation applications for new real-time 

user experiences (e.g., augmented reality) or for 

industry automation (e.g., industry 4.0) will 

benefit from processing in the edge cloud 

deployed for 5G networks. Part of these 

applications, which we refer to as time-critical, 

require strict deterministic guarantees from the 

network. They expect a high quality of service 

(e.g., fixed and low latency, ultralow jitter, ultra-

reliability) end-to-end from the application source 

(e.g., a machine) to its data center processing 

unit (Fig. 1), regardless of the traffic load.  

The typical approaches to engineer Quality of 

Service (QoS) in legacy optical switched 

networks such as traffic prioritization and packet 

pre-emption can, at best, achieve determinism for 

a single application flow, but performance dilutes 

as the number of flows increases. While time-

critical applications typically require sub 100ms 

latency and sub 100ns jitter, legacy networks can 

hardly achieve better than a few 100ms of latency 

and a few 10μs of jitter per node, both 

accumulating proportionally with the number of 

hops. Recent standards proposed alternative 

approaches for determinism [1]-[6]. However, they 

have failed to capture broad support, mainly 

because of their complexity, of scalability 

limitations, and of the prohibitive cost of renewing 

the entire infrastructure for time-critical 

applications, which are predicted to be just a 

small fraction of the edge cloud traffic. 

In this paper, we propose Deterministic 

Dynamic X (DDX), an add-on card capable of 

migrating any legacy optical switched network 

into a deterministic infrastructure. The DDX add-

on card is dimensioned to handle only time-

critical traffic, while the remaining traffic is 

managed exclusively by the legacy switching 

nodes, thereby enabling pay-as-you-grow 

capacity upgrades towards delivering 

deterministic performance. Next, we introduce 

the DDX concept, describe our prototype, and 

integrate it into a proof of concept network where 

we demonstrate per application, deterministic, 

end-to-end paths (sub 25μs latency and 50ns 

jitter) over multi-hop legacy networks. 

DDX card concept and implementation 
A DDX card should be deployed at every first and 
last switching nodes of a deterministic path 
(Fig.1), and optionally at intermediate nodes if re-
aggregation is preferred for greater network 
efficiency. The DDX add-on card performs the 
following functions 1) to pre-aggregate time-
critical traffic sharing a common in a deterministic 
way, upstream of the switching node 2) to 
frame/unframe time-sensitive data for 
deterministic transport into slotted, scheduled, 
and synchronous packets, compliant with 
standard packet (Ethernet) protocols. All 
switching nodes along the deterministic path are 
then shortcut by bridging a specific ingress and 
egress switching port, such that time-critical 
packets are isolated from any internal contention. 
For time-critical applications, the switching node 
is seen as a wire (Fig. 2). Techniques to build 
dedicated or shared bridge are found later.  

  
Fig. 1 DDX cards are inserted at first/last nodes of every deterministic 
path in an edge cloud network 

 

Fig. 2 Deterministic pre-aggregation and switch 
bridging 
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We implemented a DDX add-on card 
prototype on a HTG930 FPGA with eight client 
ports and two-line ports at 10Gb/s. We 
encapsulate the client traffic into 1.2μs (1504B) 
slots and used a centralized controller to 
schedule slots over a cyclic window of eight slots 
(9.6μs) (customizable parameter), so as to 
guarantee bandwidth for a duration just long 
enough to host the time-sensitive flow. At the 
egress DDX card, we de-capsulates the client 
traffic, queue it per destination and send it to the 
corresponding client. This part of the 
implementation can be considered as common to 
any TDM network, including to our previous work 
in [7]. The innovations of the DDX card reside in:  

We define a new slot framing. To prevent 
alteration of DDX slots by nodes along the 
deterministic path, we mimic an Ethernet frame 
by shaping the slot header in an Ethernet format. 
We hide the control information related to DDX in 
the payload perceived by the switching node 
(1504B/1480B overhead). We generate full slots 
only when necessary. If a slot has no traffic to 
carry, then only a control slot of 64B is sent 
(header + control info. + padding to reach 
minimum Ethernet frame size) as reported in Fig. 
3, so that the free room between slots can be 
reused for non-time critical traffic, while sharing 
the egress port capacity of the switching node.  

We use a periodic pacing control 
sequence, instead of harder-to-achieve tight 
clock synchronization, as time reference, for 
intermediate DDX add-on cards to drop or add 
their own slots and reaggregate traffic. We insert 
the pacing sequence as part of the control 
information at the first ingress DDX card and 
propagate it all along the path.  

We apply an original jitter compensation 
mechanism to mitigate latency variations 
experienced along the path. At the ingress DDX 
card, we count the idle symbols (20b, equivalent 
to a 6.7ms separation) between packets 
belonging to the same flow. We send these 
counters as part of the control information to the 
egress DDX card that recreates the original 
spacing between packets by buffering for the 
duration of the concatenated idle symbols. 

We virtually re-align clocks of each pair of 
ingress/egress DDX add-on cards, as shown in 

Fig. 4. With stability at +/-100ppm, the 6.4ns 
cycles of the clocks at both ends can slightly drift 
and the re-creation mechanism of the spacings 
between packets may turn inaccurate. To correct 
and track the clock mismatches, we configure the 
ingress DDX card to send timestamps (every slot) 
to the egress DDX card, where we store the 
difference between the received timestamp and 
the local time and average this difference over a 
rolling period of 5ms. After comparing values 
(diff= avg1-avg2) every 64ms, as shown in the 
measurements of Fig. 4, we virtually accelerate 
or decelerate (idle symbols counter +/-diff) the 
counting frequency at the egress DDX card. We 
track and cancel any time slope, as if the clock 
frequencies at both ends were matching down to 
0.1ppm precision (64ms= 6.4ns/0.1ppm). 

Proof of concept 

We now integrate our prototype DDX in a proof of 

concept network, where eight flows with different 

service level agreements in two groups, four real-

time ones (1Gb/s on-off, e.g., eCPRI) with 

relatively relaxed performance expectations 

(~100ms latency) and four time-critical ones 

(1Gb/s constant bit rate-CBR, e.g., loop control of 

a robot). We reserve one slot of the cyclic 

schedule for each flow of the latter group. The 

eight flows travel into two switching nodes (1a 

and 2a in Fig.1) before reaching an edge data 

center. The nodes are typically Ethernet switches 

or IP routers. We use a 12x10Gb/s Ethernet 

switch originally set in a basic configuration 

without QoS management, a typical configuration 

where unregulated contention occurs. We 

generate the flows and measure latencies using 

a Spirent Tester exhibiting 10ns precision. We 

compare the latency and jitter of time critical flows 

with and without the DDX add-on cards, 

performing aggregation and adaptation of these 

flows to deterministic transport. 

In a first scenario, we make a dedicated 

bridge between the switch ingress port 

(connected to the DDX card) and the egress port, 

using a Virtual Local Access Network (VLAN) 

marking data from the DDX card with a tag. Note 

that such VLAN creation is available in any 

packet switch/router. Only packets carrying the 

  
Fig. 3 DDX (full/control) slot structure  

  

Fig. 4 Clock mismatch evaluation       Fig. 5 experimental set-up      
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VLAN tag are allowed to the switch egress port. 

The remaining non-time critical traffic travels to 

another egress port of the switch. In Fig. 6a, we 

report the probability distribution of latencies of 

time critical flows with and without the DDX add-

on cards used for aggregation and adaptation of 

these flows to deterministic transport. We 

observe that the DDX card reduces drastically the 

latency (by 94% on the average and by 98% on 

the maximum) and its variation (by 99% on the 

average and maximum), when compared to 

legacy networking. We attribute the additional 

latency with the DDX card from the spreading of 

one packet over two reservation cycles. Overall, 

using the DDX card we record <20μs latency and 

ultralow jitter <40ns, hence exceeding the target 

performance for time-critical flows. 

In a second scenario, we make a shared 

bridge by turning on preemption (available as an 

option in some switches, here a Nokia 1830TPS). 

While bridging the switch ingress port connected 

to the DDX card with the egress port, we 

configure the ingress port as express, so that it 

interrupts (pre-empts) the transmission of any 

other non-time critical packet that would share 

the same egress port. This allows for non-time-

critical traffic to travel over the bridge by filling the 

space left (1440B) when a slot is empty, only 

filled with control data (see Fig. 3). Since only 

~5% overhead is added by the control slots, in a 

limit of 95% load, no extra port is needed to carry 

regular traffic. Note however that packet pre-

emption is not available in all legacy products.  

In Fig. 6b, we compare the latency distribution 

of time-critical packets using a VLAN-based 

bridge vs. packet pre-emption-based shared 

bridge. Despite sharing of the egress port with 

non-time-critical traffic, determinism is 

maintained with almost unchanged 18.36μs 

average and 18.43μs max latency and jitter does 

not exceed 100ns. Note that this is obtained at 

the expense of a 60% increase in latency for non-

time-critical traffic. When the path is extended 

with two more switching nodes, we measure 

larger latencies (Fig. 6c) but by no more than the 

delay of two additional store and forward 

operations, while jitter only slightly increases by 

20ns with shared bridge and by 10ns with 

dedicated bridge. Determinism is preserved in a 

multi-hop path for both bridge types. 

Legacy TDM networks such as OTN are 

known for deterministic data delivery, but 

generally rely on layer 2 switching (Ethernet) for 

aggregating small data streams, which results in 

the loss of deterministic guarantees. We propose 

now to replace layer 2 switches by DDX cards. 

To evaluate the benefits, we generate three 

competing flows (one 1Gb/s time-critical CBR 

and two 1Gb/s non-time-critical on-off flows), 

which we send across 2 OTN nodes, using either 

Ethernet switches or using deterministic pre-

aggregation with the DDX card. Fig. 7a shows the 

measured latency distribution of time-critical 

packets. Compared to Ethernet, the DDX card 

significantly reduces latency (<20.24µs) and jitter 

(<40ns) (Fig 7b). Overall, DDX add-on card 

extends the deterministic performance of OTN to 

low granularity flows at the client.   

In a final experiment, we assess the 

advantages of using DDX card through two 

Ethernet switches over two OTN nodes, in order 

to showcase an end-to-end, multi-technology 

proof of concept. The measurements, reported in 

Fig. 7c, show end-to-end latencies no higher than 

25µs and jitter smaller than 40ns, largely meeting 

deterministic performance targets. 

Conclusion 

We proposed and demonstrated a new concept 

to allow legacy optical networks to deliver record 

end-to-end jitter (<100ns) and low ultra-low 

latency (<100µs latency excluding fiber 

propagation). Only two modular add-on cards at 

both ends of a multi-hop, multi-technology 

network are needed to deploy a deterministic 

path. DDX can be the enabler of high-value 

businesses employing time-critical applications. 

      
Fig. 6 Latency PDF using legacy network w/o DDX card (a), using a dedicated vs. shared bridge (b), for 2 hops and 4 hops (c) 

   

Fig. 7 Latency PDF (a) using OTN with Ethernet switch vs. with DDX card (zoom in (b)), c) for end to end (TPS+OTN)  
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