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Abstract We propose a multiplier-less deep neural network (DNN) to mitigate fiber-nonlinear distortion
of shaped constellations. Our DNN achieves an excellent performance-complexity trade-off with pro-
gressive lottery ticket hypothesis (LHT) weight pruning and additive powers-of-two (APoT) quantization.

Introduction
Deep neural network (DNN) has been recently
investigated for the next-generation fiber-optic
communications, e.g., for nonlinear compensa-
tion[1]–[5] and end-to-end design[6]–[11]. Although
a high potential of DNN has been successfully
demonstrated in literature, DNN generally re-
quires high computational complexity and high
power operation for high-speed real-time pro-
cessing. In this paper, we propose a hardware-
friendly DNN framework for nonlinear equaliza-
tion. Our DNN realizes multiplier-less opera-
tion based on powers-of-two quantization[12]–[14].
We demonstrate that quantization-aware training
(QAT) for additive powers-of-two (APoT) weights
can fully eliminate multipliers without causing any
performance loss (but slight improvement). In
addition, we introduce weight pruning based on
the lottery ticket hypothesis (LTH)[15]–[17] to spar-
sify the over-parameterized DNN weights for fur-
ther complexity reduction. We verify that progres-
sive LTH pruning can prune more than 99% of the
weights, yielding power-efficient equalization ap-
plicable to high-throughput communications.

DNN Equalization for Probabilistic Amplitude
Shaping (PAS) QAM Systems
The optical communications system under con-
sideration is depicted in Fig. 1. Eleven-channel
dual-polarization quadrature-amplitude modula-
tions (DP-QAM) for 34 GBaud and 35 GHz spac-
ing are sent over fiber plants towards coherent re-
ceivers. We consider N spans of dispersion un-
managed links with 80 km standard single-mode
fiber (SSMF). The SSMF has a dispersion param-
eter of D = 17 ps/nm/km, a nonlinear factor of
γ = 1.2 /W/km, and an attenuation of 0.2 dB/km.
The span loss is compensated by Erbium-doped
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Fig. 1: Optical fiber transmission with shaped QAM.
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Fig. 2: Nonlinear distortion of DP-64QAM.

fiber amplifiers (EDFA) with a noise figure of 5 dB,
where total noise is added before the receiver
for simplicity. We use digital root-raised cosine
filters with 2% rolloff at both transmitter and re-
ceiver. The receiver employs standard digital
signal processing with symbol synchronization,
carrier-phase recovery, dispersion compensation,
and polarization recovery with 61-tap linear equal-
ization (LE).

Due to fiber nonlinearity, residual distortion af-
ter LE will limit the achievable information rates.
Fig. 2 shows a sample of distorted DP-64QAM
constellation after least-squares LE for 1-/10-/20-
span transmissions. Here, we compare uniform
QAM and shaped QAM, which uses distribution
matcher (DM) for probabilistic amplitude shaping
(PAS) following Maxwell–Boltzmann distribution;
Pr(xi) ∝ exp(−λ|xi|2) with λ = 2. We can ob-
serve that the shaped constellation is more distin-
guishable as the Euclidean distance is increased
with a reduced entropy (11.51 b/s/4D symbol).
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Fig. 3: Rate vs. distance for various DNN equalizers
(Uniform/Shaped DP-256QAM, −2 dBm).
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Fig. 4: DNN weights with floating-point precision, PoT, and
APoT quantizations. PoT/APoT can realize multiplier-less

implementation. APoT provides more accurate quantization.

To compensate for the residual nonlinear dis-
tortion, we use DNN-based equalizers, which
directly generate bit-wise soft-decision log-
likelihood ratios (LLRs) for the decoder. Fig. 3
shows the achievable rate of DP-256QAM
across SSMF spans for various DNN equaliz-
ers; residual multi-layer perceptron (6-layer 100-
node ResMLP), residual convolutional neural net-
work (4-layer kernel-3 ResCNN), and bidirectional
long short-term memory (2-layer 100-memory
BiLSTM). Binary cross entropy loss is minimized
via Adam with a learning rate of 0.001 for 2,000

epochs over 216 training symbols to evaluate 214

distinct testing symbols. For ResMLP, it is seen
that the constellation shaping can achieve a reach
extension by 29% for a target rate of 10 b/s. We
found that the use of more hidden layers for CNN
and LSTM architectures will further improve the
training performance, while degrading testing per-
formance due to over-fitting. It suggests that even
larger training data size is required to offer better
performance for deeper models.

Zero-Multiplier DNN with Additive Powers-of-
Two (APoT) Quantization
In order to reduce the computational complex-
ity of DNN equalizers for real-time optical com-
munications, we integrate APoT quantization[14]

into a DeepShift framework[12]. In the original
DeepShift, DNN weights are quantized into a
signed PoT as w = ±2u, where u is an integer

(a) Multiplier-Less DNN

Forward Backward

UpdateAPoT Quantize

(b) Quantization-Aware Training 

Forward:  
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Fig. 5: Straight-through rounding QAT for multiplier-less DNN
with trainable APoT weights θ.
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to train. Note that the PoT weights can fully elimi-
nate multiplier operations from DNN equalizers as
it can be realized with bit shifting for fixed-point
precision or addition operation for floating-point
(FP) precision. It is illustrated in Fig. 4. We further
improve the DeepShift by using APoT weights,
i.e., w = ±(2u + 2v), where we use another train-
able integer v < u. It requires an additional
summation, but no multiplication likewise PoT. Us-
ing APoT weights, we can significantly decrease
the residual quantization error of the conventional
PoT as depicted in Fig. 4. Note that the orig-
inal APoT[14] uses a deterministic non-trainable
look-up table, whereas our paper extends it as an
improved DeepShift with trainable APoT weights
through the use of QAT. Fig. 5 shows our QAT up-
dating, where we use a straight-through rounding
to find dual bit-shift integers u and v after each
epoch iteration. We also use a pre-training phase
before the QAT fine-tuning in order to stabilize the
DNN learning.

Fig. 6 shows the achievable rate across launch
power at the 22nd span for 6-layer 100-node
ResMLP. PoT quantization has a small degrada-
tion of 0.11 b/s compared to FP precision DNN
equalizer for shaped DP-64QAM, whereas a con-
siderable loss of 0.33 b/s is seen for shaped DP-
256QAM. Notably, our multiplier-less DNN with
APoT quantization has no degradation (but slight
improvement) from FP precision. This is a great
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Fig. 7: Progressive LTH pruning for sparse DNN: 1) Initialize
DNN weights; 2) QAT updates over multiple epochs; 3)

Determine pruning mask by weak weights at the last epoch;
4) Rewind weights to the one at early epoch and prune the

weights according to the mask; 5) Repeat steps 2–4 by
gradually increasing the pruning percentages.

advantage in practice for real-time fiber nonlinear-
ity compensation as there is no performance loss
yet no multipliers are required.

Lottery Ticket Hypothesis (LTH) Pruning for
Sparse DNN
Even though our DNN equalizer does not require
any multipliers, it still needs a relatively large
number of addition operations due to the over-
parameterized DNN architecture having huge
number of weights. We introduce a progressive
version of the LTH pruning method[15]–[17] to re-
alize low-power sparse DNN implementation. It
is known that an over-parameterized DNN can be
significantly sparsified without losing performance
and that sparsified DNN can often outperform the
dense DNN. The progressive LTH pruning is illus-
trated in Fig. 7. We first train the dense DNN via
QAT for APoT quantization, starting from random
initial weights. We then prune a small percentage
of the edges based on the trained weights. We re-
train the pruned DNN after rewinding the weights
to the early-epoch weights for non-pruned edges.
Rewinding, QAT updating, and pruning are re-
peated with a progressive increase of the prun-
ing percentages. We use late rewinding[16] of the
first-epoch weights.

Fig. 8 shows a trade-off between the achiev-
able rate and the number of non-zero weights.
For dense DNNs, more hidden nodes and more
hidden layers can improve the performance in
general, at the cost of computational complex-
ity. In consequence, a moderate depth such as
4-layer DNN can be best in the Pareto sense
of the performance-complexity trade-off in low-
complexity regimes as shown in Fig. 8. The
LTH pruning can significantly improve the trade-
off, i.e., the sparse DNNs can achieve more than
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Fig. 8: Performance-complexity trade-off of dense/sparse

DNN equalizers (−2 dBm).

50% complexity reduction over the dense DNNs
to achieve a target rate of 10 b/s. Using progres-
sive pruning, we can prune more than 99% of the
weights of 6-layer 100-node ResMLP to maintain
10 b/s. Consequently, the sparse DNNs can be
significantly lower-complex than the best dense
DNNs by 73% and 87% for shaped 64QAM and
256QAM, respectively.

Conclusion
We compared various DNN equalizers for non-
linear compensation in optical fiber communica-
tions employing probabilistic amplitude shaping.
We then proposed a zero-multiplier sparse DNN
equalizer based on state-of-the-art APoT quanti-
zation and LTH pruning techniques. We showed
that APoT quantization can achieve floating-point
arithmetic performance without using any multipli-
ers, whereas the conventional PoT quantization
suffers from a severe penalty. We also demon-
strated that the progressive LTH pruning can elim-
inate 99% of the weights, enabling highly power-
efficient implementation of DNN equalization for
real-time fiber-optic systems.
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