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Abstract We demonstrate that neural networks can outperform conventional numerical nonlinear
Fourier transform algorithms for processing the noise-corrupted optical signal. Applying the Bayesian
hyper-parameters optimisation, we design the architecture of neural networks capable to compute non-
linear signal spectrum at low SNR more accurately than conventional algorithms.

Introduction
The nonlinear Fourier transform (NFT) is an un-
conventional approach to manage nonlinear sig-
nal distortions in fibre channels[1],[2]. The direct
NFT corresponds to presenting an optical signal
on some special basis, called the nonlinear spec-
trum. The latter consists of discrete and contin-
uous parts that evolve trivially in a linear man-
ner in the communication channel governed by
the nonlinear Schrödinger equation[2],[3]. It has
been demonstrated that the transmission sys-
tems based on the NFT utilisation and modula-
tion of nonlinear spectrum modes have the poten-
tial to outperform the conventional Fourier-based
systems[4]–[7]. However, one of the serious chal-
lenges in the application of the NFT in high-speed
optical communication systems is its capability
to deal with the optical signals substantially per-
turbed by noise[6],[8],[9].

A number of numerical methods for the com-
putation of nonlinear spectrum have been pro-
posed and tested in optical transmission appli-
cations[10]–[12]. Significant progress has been
achieved in reducing the complexity of the algo-
rithms (fast NFT)[13],[14] and in improving their ac-
curacy[15]–[17]. However, at the moment, the real-
time NFT-based processing of complex wave-
forms is still far from being practically imple-
mentable at the hardware level[18], and the NFT
systems’ performance suffers from the deviations
of the real systems from the idealised channel
model[5],[6],[8],[9]. An attractive approach to over-
come these difficulties, can be use of machine
learning and, in particular, the neural networks
(NN) for the NFT-based signal processing[19],[20].
In this work, we demonstrate that using a spe-
cial advanced NN architecture that we implement
using the Bayesian hyper-parameter optimisation
for NFT, we can achieve the high denoising level
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in the recovered nonlinear spectrum.

Methods and results
To exemplify the method’s functioning, without
loss of generality we consider the signal in the
form of a single WDM return-to-zero symbol rep-
resented as a sum of the independent optical car-
riers[21]:

q(t) =

M∑
k=1

Cke
iωktf(t), 0 ≤ t < T , (1)

where M is a number of WDM channels, ωk is
a carrier frequency of the k-th channel, Ck cor-
responds to the digital data in k-th channel, and
T is the symbol interval. f(t) is a waveform of
a return-to-zero carrier pulse, which in this work
is taken (in the normalized form) as: f(t) =[
1− cos

(
4πt
T

)]
for 0 ≤ t ≤ T

4 or 3T
4 ≤ t ≤ T ,

and f(t) = 1 for T
4 < t < 3T

4 .
The direct NFT maps a signal q(t) to the

so-called nonlinear spectrum, which is acheived
through the solution of the Zakharov-Shabat
spectral problem[3]:{

−∂tψ1 + q(t)ψ2 = iλψ1,

∂tψ2 + q∗(t)ψ1 = iλψ2,
(2)

where ψi are the auxiliary functions, ξ is the spec-
tral parameter (the nonlinear analogue of conven-
tional Fourier frequency), and q(t) is the consid-
ered optical signal. Our goal here is to compute
the continuous nonlinear spectrum r(ξ) consider-
ing the solutions of 2 with special boundary con-
ditions at the trailing signal’s end, t → −∞. The
details of the NFT mathematics can be found in[2].

To train the NN for computing the nonlinear
spectrum, we used 94035 signals of the form
Eq. (1), with Ck for each carrier randomly drawn
from QPSK constellation; the number of optical
channels (carriers) in (1) was 15. Then we sam-
pled our signal at equidistant points in time, tm,
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Fig. 1: (a) Neural network architecture. The parameters of each layer were determined using Bayesian optimisation. Two

identical neural networks are used to predict the real and imaginary parts of the continuous spectrum samples. (b) Example of
the amplitude of continuous nonlinear spectrum r(ξ) calculated using the NN from (a) and with the conventional NFT method.
The blue solid line shows the spectrum for the noiseless case. Green and red dashed lines show the calculated spectra for a

noisy signal. (c) Example of metric (4) for continuous spectrum predicted by the NN from (a) trained on the signals without noise
(red solid line) and on signals with high noise at SNR = 0 (blue dashed line).

over the segment of length T , q(tm) = qm: the
number of sample points in each signal represen-
tation was 210 = 1024. The normalised symbol
interval T was set to unity, so that the time step
size used was ∆t = 2−10. For the generated dis-
cretised profile, the reflection coefficient r(ξ) was
identified for 1024 sample points in ξ variable, cal-
culated using the fast numerical NFT method[14].
The parameter ξ for our computations ranged
from −π/(4∆t) ≈ −804 to π/(4∆t) ≈ 804. Each
signal in the dataset was eventually normalised
so that its energy was set to Esignal = 39.0. We
made sure that none of our training/testing sig-
nals contained solitons. Then, we also generated
the signal sets adding uncorrelated Gaussian ran-
dom value to each sample point. For further train-
ing, in addition to the set without noise, which
had 84632 signals, we used 8 sets of 423160
signals (5 different noise realisations). Each set
corresponds to one of the following SNR values:
{0, 5, 10, 13, 17, 20, 25, 30} dB. 9 sets of 9403
signals with the corresponding noise levels were
left to validate the network performance.

We used Bayesian optimization to determine
the best neural network architecture for the prob-
lem. The Bayesian optimization builds a proba-
bilistic model of the function mapping from hyper-

parameter values to the objective evaluated on a
validation set[22],[23]. Fig. 1a depicts the schematic
for the entire optimised NN architecture. The con-
volutional part consists of three layers with 10, 15
and 10 filters. Kernel sizes of the first and third
convolutional layers are 10, and for the layer be-
tween them, it is 18. As noted above, we took the
dilation value for each layer as one of the sought
hyperparameters. The exemplary picture of how
the designed NN works on one signal is given in
Fig. 1b. Already from this figure, we can notice
that the result produced by our NN and the nonlin-
ear spectrum profiles obtained with conventional
NFT[14] are very similar. The prediction quality of
our NN is shown in Fig. 1c, which demonstrates
the quality metric η(ξ), Eq. (4), for the case of sig-
nals with (SNR = 0) and without noise.

To analyse our NN ’s performance and denois-
ing capabilities, we compare the deviations in
the obtained nonlinear spectrum calculated with
the NN and with the result of the conventional
NFT applied to the same signal without noise (the
benchmarking zero-noise level). To quantify the
performance rendered by the NN with that of con-
ventional algorithms applied to noisy signals, we
use the following metric:



Tab. 1: Comparison of the NN performance against the conventional NFT in the computation of the nonlinear spectrum r(ξ). The
values in the cells show error value (3) for each specific pair of training and validation sets SNR. The grey cells correspond to the
cases when the accuracy of the NN nonlinear spectrum restoration is lower than that of fast NFT, while the white cells correspond

to the cases when the accuracy of the continuous NF spectrum predicted by the NN is higher.
Training SNR level, dB

Conv. NFT w/o noise 30 25 20 17 13 10 5 0
w/o noise 0 8.39e-4 6.52e-3 9.43e-3 1.26e-2 1.61e-2 2.38e-2 3.59e-2 7.43e-2 1.42e-1

30 6.91e-2 5.54e-2 9.56e-3 1.11e-2 1.36e-2 1.68e-2 2.42e-2 3.63e-2 7.49e-2 1.44e-1
25 1.23e-1 9.84e-2 1.40e-2 1.39e-2 1.51e-2 1.78e-2 2.45e-2 3.63e-2 7.47e-2 1.43e-1
20 2.21e-1 1.74e-1 2.53e-2 2.18e-2 1.97e-2 2.08e-2 2.58e-2 3.65e-2 7.40e-2 1.43e-1
17 3.10e-1 2.41e-1 3.96e-2 3.23e-2 2.63e-2 2.53e-2 2.78e-2 3.70e-2 7.31e-2 1.42e-1
13 4.89e-1 3.66e-1 7.74e-2 6.12e-2 4.53e-2 3.97e-2 3.54e-2 3.98e-2 7.06e-2 1.38e-1
10 6.78e-1 4.88e-1 1.29e-1 1.03e-1 7.36e-2 6.23e-2 5.12e-2 4.85e-2 6.87e-2 1.33e-1
5 1.16e+0 7.26e-1 2.73e-1 2.31e-1 1.72e-1 1.43e-1 1.15e-1 9.93e-2 7.98e-2 1.17e-1
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0 2.00e+0 9.48e-1 4.79e-1 4.37e-1 3.60e-1 3.12e-1 2.59e-1 2.29e-1 1.74e-1 1.16e-1

η =
1

S

S∑
i=1

〈ηi(ξ)〉ξ, (3)

ηi(ξ) =
|{rpredicted(ξ)}i − {ractual(ξ)}i|

〈|{ractual(ξ)}i|〉ξ
, (4)

where S is the total number of signals in the val-
idation set, 〈·〉ξ denotes the averaging over the
spectral interval, {rpredicted(ξ)}i and {ractual(ξ)}i
correspond to the value of nonlinear spectrum
r(ξ) computed for the signal number i at point ξ
(we compare the quantities for the validation data
set). The label “predicted” refers to the result pro-
duced by the NN on the noisy signal, and “actual”
marks the r(ξ) value obtained using the conven-
tional NFT algorithm[14] for the noiseless signal.
The relative error η(ξ) is determined at the point
ξ, so we use 〈η(ξ)〉ξ to estimate the overall mean
of the error for one signal, and use Eq. (3) to eval-
uate the error for the entire validation dataset. We
stress that the metric was chosen in such a way
as to take into account even the regions where
the value of the spectrum is much less than one.

Table 1 shows the error values for the restora-
tion of r(ξ) coefficient of a noiseless and noisy-
perturbed signals (1), by the NFT-Net architec-
ture given in Fig. 1a. The first row in the table
corresponds to the noiseless case. It is always
shadowed with grey, which means that the NN
cannot provide any better results than the bench-
mark ones rendered by the conventional fast NFT
method used to generate the training data.

However, the values of the error for noise-
corrupted signals reveal interesting tendencies.
It follows from the table that for the low training
noise level (up to 10 dB, columns three through
nine), the NN error is typically lowest for the
noiseless validation dataset (second row). Thus,
the addition of low noise in the training dataset
only degrades the NN restoration capability, even
though this decrease is not significant. For the

most interesting case of high noise level (i.e.
accumulated in long-haul systems), the network
works best for the signal sets where the SNR
value is the same for the validation and training
sets. In such cases, the relative error is about 8-
12%, while the error for conventional NFT is at the
level of 100-200%. With decreasing noise (rows
from bottom to top) in the validation set, the er-
ror value remains at approximately the same level
after the cell corresponding to the same training
and validation SNRs. These results confirm that
the presented NN architecture is capable of per-
forming the NFT operation for complicated sig-
nals, and, in addition, it can also work as a highly
efficient denoising element when the noise level
becomes non-negligible.

Conclusions
We examined the implementation of the NFT by
the NN with a special structure, applying the
Bayesian hyperparameters optimisation to deter-
mine the best-performing network architecture.
We considered here an almost unexplored case
dealing with the computation of the continuous
nonlinear spectrum, which is most interesting
from the optical communications perspective. It
was demonstrated that the NN-based processing
can substantially improve the accuracy of the NFT
in the presence of noise, compared to the con-
ventional high-accuracy NFT processing method.
The advantage in denoising becomes most pro-
nounced at high noise levels, with the maximum
restoration quality typically occurring when the
SNR of the training data is the same as that of
the validation dataset.
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