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Abstract We propose a quality of transmission metric which unifies different performance-related 
metrics into one. Our metric presents advantages such as the reduction of stored and transmitted data, 
low controlled uncertainty and high monitoring speed, while it is compatible with an extended range of 
performance regimes. 

Introduction 
Today optical networks are designed with a high 
level of margins to guarantee robust transmission 
of predefined capacities for 10 to 20 years. At a 
time where system vendors are asked to increase 
capacity while lowering costs, leveraging margins 
is attractive. To do so, coherent receivers allow 
closed-loop capacity upgrade based on quality of 
transmission (QoT) monitoring[1]. Besides, since 
margins are a mere reflection of uncertainties[2], 
QoT monitoring can also be used to reduce 
uncertainty of the physical system parameters[3], 
to trigger alarms related to network health 
issues[4] etc. As in any real-time scheme, the 
overall performance fundamentally depends on 
the speed and accuracy of the QoT estimation, 
hence the motivation to optimize both. 

Many performance metrics are used to assess 
the QoT before forward error correction (FEC): 
pre-FEC bit error ratio (BER), 𝑄ଶ factor, error 
vector magnitude (EVM)[5], generalized signal to 
noise ratio (GSNR)[6], OSNR, etc. These metrics 
generally derive from three measurement 
methods. First, the optical signal to noise ratio 
(OSNR) is typically measured before the receiver 
with an optical spectrum analyser. This technique 
inherited from the 10G era is deprecated now due 
to its poor accuracy for transparently routed 
coherent wavelength division multiplexed 
channels. Second, the pre-FEC BER is reported 
in coherent receivers e.g. via the parity check 
violation rate provided by the FEC decoder. 
Third, the GSNR is measured directly from the 
received noisy samples, right-before FEC. 

In this paper we first revisit the theoretical 
accuracy of both BER and EVM measurements 
and we discuss how they are influenced by the 
number of samples used, i.e. the monitoring 
period. Then we propose a new metric which 
leverages both measurements to simultaneously 
optimize both speed and accuracy of the QoT 
estimation. Finally, we provide numerical 
simulation results to support the achieved 
benefits of our metric and discuss on the 
challenges left to be addressed. 

Theoretical accuracies of QoT monitoring for 

AWGN channels 
We first focus on the error count method currently 
used to evaluate the pre-FEC BER and 𝑄ଶ in 
coherent transponders. Since the monitored BER 
may fluctuate in time, the system performance is 
best described by the expected value of the BER, 
namely the bit error probability (BEP). 
The relative uncertainty of each BER 
measurement is approximately given[7] by the 
inverse square root of the expected number of 
counted erroneous bits 𝑁௘, i.e. 

𝜀 = 𝜎஻ாோ/𝐵𝐸𝑃 = 𝐸[𝑁௘]ି
ଵ
ଶ = (𝑁௕𝐵𝐸𝑃)ି

ଵ
ଶ (1) 

with the expected value of BER given by 
𝐸[𝐵𝐸𝑅] = 𝐵𝐸𝑃 = 𝐸[𝑁௘]/𝑁௕. 𝑁௕ is the number of 
bits used for the BER estimation with 𝑁௕ = 𝑁௦ ⋅ 𝑘, 
where 𝑁௦ is the number of received complex 
samples used in the BER assessment and 𝑘 is 
the average number of bits per symbol. Then the 
number of complex samples is linked with the 
monitoring period 𝑇௠ by the relation 

𝑁௦ =  𝑁௣ ⋅  𝑅௦ ⋅  𝑇௠ (2) 
where 𝑅௦ is the symbolrate and 𝑁௣ is the number 
of polarizations used in the calculation (i.e. 𝑁௣ =

2 for PDM formats). Combining eqs. (1) and (2), 
the BER uncertainty can be defined as 

𝛿𝐵𝐸𝑅 = 𝑛 ⋅ 𝜎஻ாோ = 𝑛ට𝐵𝐸𝑃/(𝑘𝑁௣𝑅௦𝑇௠) (3) 

where the coverage factor 𝑛 is a multiplier of the 
standard deviation 𝜎஻ாோ to obtain an expanded 
uncertainty. As it is evident from eqs. (2) and (3), 
for a system with arbitrary BEP, the relative error 
can be reduced by increasing 𝑁௦, i.e. by 
increasing 𝑇௠. However, due to the quadratic 
dependence of eq. (3), 𝑇௠ needs to be increased 
by 4 to reduce the error by 2. 
For arbitrary modulation, the BEP can be 
approximately given as a function of the “nominal 
GSNR”, denoted 𝐺𝑆𝑁𝑅௡, through the relation[8, 9] 

𝐵𝐸𝑃 = (1/𝑏) ⋅ 𝑒𝑟𝑓𝑐ൣඥ𝐺𝑆𝑁𝑅௡/(2𝑐)൧  (4) 

where 𝑏 and 𝑐 are modulation dependent 
parameters, e.g. for QPSK (𝑏, 𝑐) = (2, 1) and for 
16QAM (𝑏, 𝑐) = (8/3, 5). The parameter 𝐺𝑆𝑁𝑅௡ 
is defined for any channel with a given BEP, but 
it is equal to the theoretical SNR only if the 
channel is truly impacted by additive white 



 

 

Gaussian noise (AWGN). Inverting eq. (4), an 
estimation of 𝐺𝑆𝑁𝑅௡ in dB can be obtained from 
a BER value by 

     212erfcBERGSNR dB g b BER g c    
 (5) 

where 𝑔(𝑥) = 10 𝑙𝑜𝑔ଵ଴ (𝑥). As a first order 
approximation, the uncertainty of a quantity 𝑦 =
𝑓(𝑥) can be expressed as a function of the error  
𝛿𝑥, through the relation 

𝛿𝑦 ≈ |𝜕𝑓(𝑥)/𝜕𝑥|𝛿𝑥 (6) 
Combining eqs. (3), (5) and (6) and assuming 

𝐵𝐸𝑃 ≈ 𝐵𝐸𝑅 (i.e. the average BER is equal to the 
current BER sample) we can estimate the 
𝐺𝑆𝑁𝑅஻ாோ error, denoted 𝛿𝑆𝑁𝑅஻ாோ, as 
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In Fig. 1 we illustrate the uncertainty of eq. (7) as 
a function of the number of samples 𝑁௦, for PDM-
QPSK and PDM-16QAM, 𝑛 = 3 and different 
𝐺𝑆𝑁𝑅௡ values. For 𝐺𝑆𝑁𝑅௡ = 12𝑑𝐵 PDM-QPSK 
operates well above and PDM-16QAM slightly 
below typical FEC limit. In this case we note that, 
for instance, 𝑁௦ = 2 × 16384 yields uncertainty of 
about 1 dB, while 2 × 65536 complex samples 
are required to achieve 0.5dB. On the other hand, 
since PDM-16QAM yields more errors, we reach 
uncertainties of 0.08dB and 0.04dB. Equivalently, 
obtaining low 𝛿𝐺𝑆𝑁𝑅஻ாோ  for high 𝐺𝑆𝑁𝑅௡ is a 
challenge for real-time BER monitoring. For 
instance, with PDM-QPSK and 𝐺𝑆𝑁𝑅௡ = 16𝑑𝐵, 
getting 𝛿𝐺𝑆𝑁𝑅஻ாோ = 0.01𝑑𝐵 requires at least four 
minutes, while 𝛿𝐺𝑆𝑁𝑅஻ாோ = 0.001𝑑𝐵 comes at 
the price of several hours of monitoring. Such 
monitoring periods may be incompatible with 
real-time applications or high-frequency events. 

To overcome the abovementioned issue, 
statistics of the received signal constellation can 
be calculated and used to extrapolate the BER, 
in the high 𝐺𝑆𝑁𝑅௡ regime, independently of the 
number of counted errors. For instance, the 
GSNR can be assessed through the EVM as 

𝐺𝑆𝑁𝑅ா௏ெ ≈ 𝐸𝑉𝑀ିଶ (8) 

Nevertheless, EVM is biased for low 𝐺𝑆𝑁𝑅௡, 
with this bias given for square MQAM formats 
by[5] 
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where 𝛾௞ = 1 − 𝑘/√𝑀 and 𝛽௞ = 2𝑘 − 1. For high 
𝐺𝑆𝑁𝑅௡ the bias vanishes and 𝐺𝑆𝑁𝑅ா௏ெ is equal 
to the noise total variance. The assessment of a 
complex noise variance 𝑉 though, through a finite 
number of samples 𝑁௦ has a standard deviation 
𝛿𝑉, which using eq. (6) verifies the expression[10] 

𝛿𝑉[𝑑𝐵] = (10/𝑙𝑛10)(𝑁௦ − 1)ିଵ/ଶ (10) 
Finally, combining eqs. (9) and (10) we propose 
to estimate the error of the EVM measurement as 

 𝛿𝐺𝑆𝑁𝑅ா௏ெ[𝑑𝐵] =

ඥ[−𝑔(1 + 𝐺𝑆𝑁𝑅௡/𝐺𝑆𝑁𝑅௕௜௔௦)]ଶ + 𝛿𝑉[𝑑𝐵]ଶ 
(11) 

Proposed metric and numerical simulations 
In Fig. 2 we illustrate the predictions of eqs. (7), 
(10) and (11) for QPSK modulation as a function 
of 𝐺𝑆𝑁𝑅௡, for a system corrupted by AWGN, 
using 𝑁௦ = 65536 received complex samples. 
The simulated quadratic errors 𝛿𝐺𝑆𝑁𝑅஻ாோ

෣  and 
δ𝐺𝑆𝑁𝑅ா௏ெ

෣  are also plotted for ten noise seeds. 
We verify that, for the low 𝐺𝑆𝑁𝑅௡ regime, the 
error of the BER assessment remains low and the 
error of the EVM assessment exponentially 
increases, while the opposite happens in the high 
𝐺𝑆𝑁𝑅௡ regime, with the BER error increasing 
exponentially and the EVM error saturating to 𝛿𝑉 
of eq. (10). 𝛿𝐺𝑆𝑁𝑅஻ாோ and 𝛿𝐺𝑆𝑁𝑅ா௏ெ are equal 
for 𝐺𝑆𝑁𝑅௡ = 𝐺𝑆𝑁𝑅௧௛, where the parameter 
𝐺𝑆𝑁𝑅௧௛ can be computed given the modulation 
and the number of samples used for monitoring.  

 
We also note that, while increasing the 

number of samples for high 𝐺𝑆𝑁𝑅௡ will improve 
the accuracy of 𝐺𝑆𝑁𝑅஻ாோ at the cost of a longer 
monitoring period, the 𝐺𝑆𝑁𝑅ா௏ெ measurement is 
already accurate in this regime, without the need 
of collecting more samples. We now define a new 
metric allowing to optimize both accuracy and 

 
Fig. 1: 𝐺𝑆𝑁𝑅஻ாோ uncertainty for PDM-QPSK and PDM-

16QAM vs. the number of symbols 𝑁௦ for arbitrary 
values of 𝐺𝑆𝑁𝑅௡ 

 
Fig. 2: 𝐺𝑆𝑁𝑅 uncertainty for QPSK modulation when 
EVM or BER are used. Markers denote the quadratic 

error for a simulation with 𝑁௦ = 65536 symbols.  



 

 

speed when assessing the QoT, as the weighted 
sum of the two assessments, i.e. 

𝐺𝑆𝑁𝑅௪ ≡ 𝑎𝐺𝑆𝑁𝑅஻ாோ + (1 − 𝑎)𝐺𝑆𝑁𝑅ா௏ெ (12) 
where 𝑎 is a coefficient. A direct way to set 𝑎 is to 
assume 𝐺𝑆𝑁𝑅௡ ≈ 𝐺𝑆𝑁𝑅஻ாோ and then use 

𝑎 = ൜
0, 𝐺𝑆𝑁𝑅஻ாோ > 𝐺𝑆𝑁𝑅௧௛

1, 𝐺𝑆𝑁𝑅஻ாோ < 𝐺𝑆𝑁𝑅௧௛
 (13) 

or otherwise, a smooth function can be used for 
the transition between the two regimes. The 
simulation result for 𝛿𝐺𝑆𝑁𝑅௪ is also plotted in Fig. 
2, showing that 𝐺𝑆𝑁𝑅௪ inherits the best from both 
QoT readings, while its accuracy is upper-
bounded for all 𝐺𝑆𝑁𝑅௡ regimes by the value 

 𝛿𝐺𝑆𝑁𝑅௪ = 𝛿𝐺𝑆𝑁𝑅஻ாோ(𝐺𝑆𝑁𝑅௧௛) (14) 

Limitations and future challenges 
The considerations of the previous sections 
concerning EVM are rigorously valid only for an 
AWGN channel. This is approximately the case 
of systems in the scope of the Gaussian noise 
(GN) model[11, 12], where nonlinear distortion is 
treated as AWGN. While this is undoubtedly the 
most frequent case, QoT may also be monitored 
for links outside the validity domain of the GN 
model. To illustrate the limitations of our 
approach we therefore focus on one extreme 
case of system impacted by nonlinear distortion 
with non-AWGN statistics. For this, we simulate 
propagation over one large effective area fiber 
(LEAF) span, with a variable input dispersion pre-
distortion[13, 14] denoted 𝐷௣௥௘, PDM-QPSK format, 
symbol-rate 𝑅 = 32𝐺𝑏𝑎𝑢𝑑, 13 channels, spacing 
of 50GHz and 0.01 root-raised cosine pulse 
shape. Traffic was emulated by pseudorandom 
sequences of 𝑁௦ = 2ଶ଴ symbols and input power 
per channel was set to 9dBm. Amplifiers were 
considered flat gain repeaters and the receiver 
was ideal with matched filtering, ideal dispersion 
compensation and data-aided phase recovery. In 
Fig. 3(a) we plot 𝐺𝑆𝑁𝑅஻ாோ , 𝐺𝑆𝑁𝑅ா௏ெ and 𝐺𝑆𝑁𝑅௪ 
as a function of 𝐷௣௥௘, using the received samples 
of both polarization tributaries. We show with 
dashed line the threshold 𝐺𝑆𝑁𝑅௧௛ and the 
associated error-bars of each GSNR assessment 
from eqs. (7), (11) and (14). We stress that 𝑁௦ =

2 × 10ଶ଴ samples yields 𝛿𝐺𝑆𝑁𝑅஻ாோ < 0.07𝑑𝐵 and 
therefore 𝐺𝑆𝑁𝑅஻ாோ  is fairly accurate for any 𝐷௣௥௘. 
We note that for high 𝐷௣௥௘, 𝐺𝑆𝑁𝑅௪ coincides with 
𝐺𝑆𝑁𝑅஻ாோ, correctly accounting for the error-bar of 
𝐺𝑆𝑁𝑅ா௏ெ. However, for low 𝐷௣௥௘ we observe a 
mismatch of about 2dB between 𝐺𝑆𝑁𝑅஻ாோ  and 
𝐺𝑆𝑁𝑅ா௏ெ which is not covered by the error-bars 
and 𝐺𝑆𝑁𝑅௪ is (erroneously) set to 𝐺𝑆𝑁𝑅ா௏ெ. In 
such cases, the EVM reading could be discarded, 
but using only the BER reading over a long 
monitoring period, could potentially hinder 
accuracy-sensitive real-time applications. 
Otherwise, ~2dBs of extra margin is needed. 

The above-mentioned issue can be attributed 
to the non-AWGN nature of NL noise, suggesting 
that EVM is not a sufficient statistic to describe its 
probability density function (PDF). In Fig. 3(b) we 
plot with markers the simulated PDFs for the in-
phase and quadrature components of the NL 
noise for 𝐷௣௥௘ = 0𝑝𝑠/𝑛𝑚. Gaussian PDFs are 
denoted with dashed lines and solid lines denote 
a 2nd order Edgeworth series (ES)[15], involving 
high order statistics like skewness and kurtosis, 
which can be calculated from the received signal 
together with EVM.  Integrating ES we assess the 
BEP which is then converted into GSNR by eq. 
(5), denoted 𝐺𝑆𝑁𝑅ா௏ெା and assessed in Fig. 3(a) 
for the simulated signals. Replacing 𝐺𝑆𝑁𝑅ா௏ெ 
with 𝐺𝑆𝑁𝑅ா௏ெା in eq. (12), we get the quantity 
𝐺𝑆𝑁𝑅௪ା, also plotted in Fig. 3(a), which reduces 
the difference from 𝐺𝑆𝑁𝑅஻ாோ by ~0.8dB and 
therefore the corresponding extra margin. 

Conclusions 
We introduce a new metric for performance 
monitoring, leveraging the readings of both error 
counting and statistics of the received noisy 
signal. The new metric has a low accuracy for the 
whole performance range of systems impacted 
by AWGN and presents advantages for real-time 
applications. We finally confront the new criterion 
to an extreme case of nonlinear noise and we 
briefly discuss the remaining challenges and 
possible solutions for non-AWGN channels. 

 
Fig. 3: (a)Nonlinear channel GSNR assessed through 𝐺𝑆𝑁𝑅஻ாோ, 𝐺𝑆𝑁𝑅ா௏ெ, 𝐺𝑆𝑁𝑅௪, 𝐺𝑆𝑁𝑅ா௏ெା and 𝐺𝑆𝑁𝑅௪ା (b) marginal PDFs for 

the in-phase and quadrature NL noise components for P=9dBm. Markers denote simulation, solid lines denote 2nd order 
Edgeworth series and dashed lines denote the Gaussian PDF. 



 

 

References 

[1] C. Delezoide, P. Ramantanis, and P. Layec, 
“Leveraging Field Data For The Joint Optimization of 
Capacity and Availability in Low-Margin Optical 
Networks,” Journal of Lightwave Technology, pp. 1–1, 
2020. 

[2] P. Ramantanis, C. Delezoide, P. Layec, and S. Bigo, 
“Revisiting the calculation of performance margins in 
monitoring-enabled optical networks,” Journal of 
Optical Communications and Networking, vol. 11, 
no. 10, pp. C67–C75, 2019. 

[3] E. Seve, J. Pesic, Y. Pointurier, and Y. Pointurier, 
“Associating machine-learning and analytical models 
for quality of transmission estimation: combining the 
best of both worlds,” Journal of Optical 
Communications and Networking, vol. 13, no. 6, pp. 
C21–C30, Jun. 2021. 

[4] S. Shahkarami, F. Musumeci, F. Cugini, and 
M. Tornatore, “Machine-Learning-Based Soft-Failure 
Detection and Identification in Optical Networks,” in 
2018 Optical Fiber Communications Conference and 
Exposition (OFC), Mar. 2018, pp. 1–3. 

[5] R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, 
D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, 
M. Huebner, C. Koos, J. Becker, W. Freude, and 
J. Leuthold, “Error Vector Magnitude as a Performance 
Measure for Advanced Modulation Formats,” IEEE 
Photonics Technology Letters, vol. 24, no. 1, pp. 61–
63, 2012. 

[6] V. Kamalov, M. Cantono, V. Vusirikala, L. Jovanovski, 
M. Salsi, A. Pilipetskii, D. Kovsh, M. Bolshtyansky, 
G. Mohs, E. R. Hartling, S. Grubb, T. Stuch, 
H. Fevrier, E. Mateo, Y. Inada, T. Inoue, P. Pecci, 
V. Letellier, O. Courtois, O. Ait-Sab, O. Gautheron, 
and P. Mehta, “The subsea fiber as a shannon 
channel,” in in Suboptic 2019, 2019. 

[7] A. Bononi, L. Rusch, A. Ghazisaeidi, F. Vacondio, and 
N. Rossi, “A Fresh Look at Multicanonical Monte Carlo 
from a Telecom Perspective,” in Global 
Telecommunications Conference, 2009. GLOBECOM 
2009. IEEE, 2009, pp. 1 –8. 

[8] J. Proakis, Digital Communications. McGraw-Hill 
Science/Engineering/Math, 8 2000, 4. 

[9] K. Cho and D. Yoon, “On the general BER expression 
of one- and two-dimensional amplitude modulations,” 
vol. 50, no. 7, pp. 1074–1080, 2002. 

[10] G. Casella and R. L. Berger, Statistical inference, 
2nd ed. Cengage Learning, 2002. 

[11] P. Poggiolini, “The GN model of non-linear 
propagation in uncompensated coherent optical 
systems,” J. Lightwave Technol., vol. 30, no. 24, pp. 
3857–3879, Dec 2012. 

[12] F. Vacondio, O. Rival, C. Simonneau, E. Grellier, 
A. Bononi, L. Lorcy, J.-C. Antona, and S. Bigo, “On 
nonlinear distortions of highly dispersive optical 
coherent systems,” Optics Express, vol. 20, no. 2, pp. 
1022–1032, 1 2012. 

[13] E. Seve, P. Ramantanis, J.-C. Antona, E. Grellier, 
O. Rival, F. Vacondio, and S. Bigo, “Semi-analytical 
model for the performance estimation of 100Gb/s 
PDM-QPSK optical transmission systems without 
inline dispersion compensation and mixed fiber types,” 
in Optical Communication (ECOC 2013), 39th 
European Conference and Exhibition on, 2013, pp. 1–
3. 

[14] P. Jennevé, P. Ramantanis, F. Boitier, N. Dubreuil, 

and S. Bigo, “Experimental investigation of the validity 
domain of the Gaussian noise model over dispersion 
managed systems,” in Optical Fiber Communication 
Conference. Optical Society of America, 2016, p. 
W3I.3. 

[15] C. S. Withers and S. Nadarajah, “The dual multivariate 
Charlier and Edgeworth expansions,” Statistics & 
Probability Letters, vol. 87, pp. 76–85, Apr. 2014. 


