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Abstract Design of modern photonic devices requires to handle a large number of parameters and fig-
ures of merit. By scaling down the complexity of the problem, machine learning dimensionality reduction
enables the discovery of better performing devices, higher integration scale, and efficient evaluation of

fabrication tolerances.

Introduction

Integrated photonics aims at realizing on-chip a
wide range of functionalities, including light gen-
eration and detection, coupling, routing, modu-
lation, and filtering. As such, performance and
scale of integration have always been a primary
focus in the development of novel devices. Pursu-
ing these goals, many traditional building blocks
have been realized using relatively simple ge-
ometries whose performance are controlled by a
small number of parameters that can be designed
manually. However, this process results in rel-
atively large devices, with dimensions of tens or
even hundreds of microns even for the high index
contrast silicon photonics platform. These limita-
tions ignited a strong research interest in explor-
ing more complex geometries, non-trivial shapes,
and metamaterials, achieving unparalleled size
reduction and innovative functionalities!'?l, In-
evitably, this also imposed increasing challenges
for classical design methods. Sweep of design
parameters becomes computationally intractable
or not applicable as parameters are often strongly
correlated. Design trends and guidelines become
difficult to extract, visualize or understand.

As a result, optimization methods are now
commonly used to search more efficiently for
high-performance designs with complex geome-
tries. Likewise, machine learning approaches,
particularly neural networks, have been more re-
cently used to explore the ever expanding de-
sign spacelfr®l,  However, two main obsta-
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cles emerge in high-dimensional design prob-
lems. The high-dimensional design space is also
commonly highly non-convex and identifying the
global optimum with a reasonable confidence be-
comes challenging. In particular, the outcome
of gradient-based optimization, e.g. those ex-
ploiting the adjoint method, is strongly dependent
on the initial guess, with the risk of local, sub-
optimal solutions. Additionally, the design is often
not only multi-parameter but also multi-objective
since multiple performance and fabrication re-
quirements need to be taken into account, mak-
ing it difficult to craft appropriate objective func-
tions which can lead to a device with the required
performance. Lastly, only a single or a handful of
optimized designs are often discovered, reveal-
ing very little on the characteristics of the design
space and the influence of the design parameters
on the device performance.

Here, we present our recent work on the use
of dimensionality reduction and optimization tools
to tackle some of the challenges in the analy-
sis and design of multi-parameter, multi-objective
photonic devices.

Use of dimensionality reduction

A possible approach to handle high-dimensional
design problems is to exploit the dependency
existing between the parameters governing the
device behavior to effectively reduce their num-
ber. Adapting dimensionality-reduction machine-
learning algorithms, we have developed a design
strategyl®l, schematically represented in Fig. 1,
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Fig. 1: The proposed strategy for multi-objective,
multi-parameter photonic design.

that implements this approach. First, multiple iter-
ations of a gradient-based optimization algorithm
are used to generate a small collection of differ-
ent good designs, i.e., designs that optimize a
primary performance criterion (Fig. 1a). These
optimizations involve the original M parameters.
In the second stage, dimensionality reduction is
applied to analyze the relationship in the parame-
ter space between these designs. The goal is to
identify a lower-dimensional sub-space of highly
efficient designs. This sub-space is described by
significantly fewer hyper-parameters compared
with the original design space (N<<M). In the last
stage, we introduce multiple design objectives.
Depending on the number of hyper-parameters N,
this can be achieved either by exhaustively map-
ping the design sub-space by computing across
all required performance criteria or by exploiting a
(multi-objective) optimization algorithm within the
sub-space, which is commonly easier to explore
compared to the original design space.

Application examples

This approach has been successfully applied to
several design scenarios, including silicon-based
vertical grating couplers!®, grating couplers in-
corporating subwavelength metamaterials for en-
larged feature sizel’H9, and power splitters('%.
Figure 2(a) shows the schematic layout of
an integrated micro-antenna in the silicon-on-
insulator (SOI) platform whose design has been
optimized through global mapping of the design
sub-spacel'!l. The antenna is based on a sur-
face grating with unit cells composed by a 300-
nm-thick pillar and an L-shape segment partially
etched to 150 nm. The antenna has five periods
of which the first one is apodized. The goal of
the design is to maximize the fraction of optical
power diffracted upwards while maintaining a ver-
tical emission and low back-reflection into the in-
put waveguide. The design requires the optimiza-
tion of M=10 parameters representing the length
of each segment in the two different periods. The
use of the described design strategy (with princi-
pal component analysis as dimensionality reduc-
tion tool) reveals that it is possible to represent
a good antenna design with high diffraction effi-
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Fig. 2: (a) Schematic of the vertical micro-antenna for the
near-IR wavelength range. (b) Diffraction efficiency and
back-reflection of the optimized antenna. (c) Power splitter for
the mid-IR wavelength range. The layout of the optimized
design as well as that of a reference device are shown. (d)
Wavelength dependence of the efficiency for the two devices.
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ciency using only N=3 parameters instead of the
original 10, allowing a rapid and exhaustive map-
ping of the region of good designs by parameter
sweeps. This allows to identify a compact de-
sign with total grating length of 3.6 pm, whose
performance is reported in Fig. 2(b). At the de-
sign wavelength of 1550 nm, the upward diffrac-
tion efficiency (blue solid line) has a maximum T,
= 0.88 (-0.55 dB). Despite the vertical emission,
back-reflection remains below -17 dB across the
entire 1450 -1650 nm band (orange solid line) and
reaches -20 dB at 1550 nm.

Figure 2(c) shows a second device example
whose design exploited instead an optimization
algorithm running on the lower-dimensional de-
sign sub-space. The device is a power splitter
for the mid-IR wavelength range realized on a rib-
shaped silicon waveguide with thickness of 700
nm and a partial etch of 400 nm. The wave-
guide is suspended to avoid the large SiO; ab-
sorptions in this wavelength rangel'?. A design
obtained with a 1x2 MMI is used as reference
(marked as “reference” in the figure). Input and
output waveguides are 1.5 um wide and tapers
are used to enlarge their width up to 3.5 um. The
MMI is 8 um wide and 15 pm long. The design
objective is to optimize the profile of the device in
order to make it more compact without severely
hampering its performance in terms of efficiency,
bandwidth, and back-reflections. The profile of
the device is symmetrical and is sampled using
16 points whose coordinates represent the M =
16 parameters describing the device. To gene-
rate the layout, a segmented linear interpolation
is performed between the 16 points. Sharp fea-
tures are removed by convolution with a Gaussian
function. The length of the device is fixed at 20
pm and 1.5 pm-wide input/output waveguides are
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Fig. 3: (a) Schematic of the cascaded Mach-Zehnder filter.
Probability density functions of the transmission at bar (b)
and cross (c) ports as well bandwidth (d) are computed with a
polynomial chaos surrogate model and dimensionality
reduction and compared with reference Monte Carlo analysis.

interfaced directly to the device, without tapers.
The described design procedure allows to reduce
the initial 16 parameters to 7 hyper-parameters.
The resulting dimensionality of the sub-space still
makes global mapping impractical in this case.
A multi-objective genetic algorithm('®l is exploited
instead to navigate this sub-space and simulta-
neously maximize the device efficiency and band-
width and minimize back-reflections. The final de-
sign profile is marked in Fig. 2(c) as “optimized”.
Efficiency comparison for the reference and op-
timized devices is reported in Fig. 2(d). Despite
a 40% reduction in length, the optimized design
has an efficiency reduction of less than 1% at A
= 5.5 um. The optimized design also shows a re-
duced roll-off, especially in the 5.2 - 5.8 um range.
Reflections are comparable between the two de-
signs.

Fabrication tolerance analysis

The analysis of performance variation due to fab-
rication tolerance is a fundamental aspect in the
design of a photonic component. Yet this analy-
sis is often complicated by the stochastic nature
of the tolerance and by the presence of a large
number of parameters that can suffer fabrication-
related deviations. Recently, we proposed an ap-
proach that can largely reduce the computational
resources required for the analysis by combin-
ing sparse polynomial chaos surrogate models
with dimensionality reductionl'#. First, Karhunen-
Loéve transform is used to both reduce the num-
ber of input parameters and remove their corre-

lation, similarly to the approach shown in Fig. 1.
Additionally, principal component analysis is ap-
plied also to the output variables to achieve the
same result, i.e., reduce their number exploiting
their inherit correlation.

A seven-order Mach-Zehnder filter used as ex-
ample is shown in Fig. 3(a)l'l. The filter is de-
signed to have a nominal 3-dB bandwidth of 29
GHz at a wavelength of 1522 nm, an in-band
isolation larger than 20 dB, and a free spectral
range of 100 GHz. The estimated total filter length
once realized on a SOI technology is about 5 mm.
Uncertainty is considered in the width and thick-
ness of the waveguides and the separating gaps
in the directional couplers. The total number of
uncertain parameter is M=38, all assumed to be
Gaussian distributed parameters. We also as-
sume the parameters as correlated with a corre-
lation length of 4.5 mm. The output variables of
the analysis are 1000 wavelength samples of the
simulated transfer function of the filter. The im-
pact of the uncertainties on the filter transfer func-
tion can be analyzed by a standard Monte Carlo
analysis, which would require about 10* simula-
tions to assure convergence. For this example,
the proposed technique allows to reduce the num-
ber of input random parameter to only N=9 from
the original 38 and also compress the output to
9 principal components from the original 1000.
In this way, the full stochastic analysis can be
performed with only 200 simulations, with a 30-
fold reduction in computational time compared to
Monte Carlo. The probability density function of
the transmission at the bar and cross port for the
central wavelength and the 3-dB bandwidth are
presented in Fig. 3(b-d), respectively, showing an
excellent agreement.

Conclusion

Design of photonic devices is rapidly growing in
complexity, both in terms of the number of param-
eters that need to be handled as well as for the
multiple figures of merit to be simultaneously op-
timized. Some of these quantities, e.g., fabrica-
tion tolerance, are particularly complex to include
in the design process because their evaluation
could require large computational resources. Ma-
chine learning and in particular dimensionality re-
duction can provide a powerful approach to scale
down the complexity of the analysis and design
problem, enabling the discovery of better perform-
ing, robust, and compact photonic devices and
the on-chip integration of novel functionalities.
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