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Abstract A novel deviation-correction algorithm named memory-artificial neural network is proposed in
the ANN-based 3D indoor visible light positioning system for environmental interference mitigation and
anti-LED blocked. The average positioning error of 1.04cm and 2.89cm is experimentally achieved
under environmental interference and LED-blocked, respectively.

Introduction
With the fast development of 5G-mobile
communication, the demand for precise indoor
positioning services and location-based
applications is increasing rapidly [1]. The visible
light positioning (VLP) based on light-emitting
diodes (LED) is a potential solution for not only
stable transmission link and immunity to
electromagnetic interference but also the
advantages of high position accuracy, low cost,
and compatibility with building illumination
system [2]. The most used scheme in the VLP
system is the received signal strength (RSS)
technique which estimates the distance to LEDs
by the light intensity attenuation factor [3].
Recently, the introduction of machine learning
(ML) is saving complicated models calculation in
the RSS scheme, contributing to lower algorithm
complexity. Typically, an artificial neural network
(ANN) combining with the RSS-based VLP
system has the advantages of high accuracy,
low complexity, and low cost. An ANN-based
VLP system is used to achieve positioning with
a diffuse channel [4]. In our previous work [5], by
using two-layer ANN technique, a 3D positioning
system with an average positioning error of
0.9cm has been successfully demonstrated.

However, as a typical supervised-ML, the
join of ANN brings the RSS-VLP system not only
the advantages, but also inherent shortcomings
such as being susceptible to the environment,
depending on the database, and insufficient
flexibility. Since the robustness which indicates
the ability of the system to resist interference
such as power fluctuation, channel disturbance,
surrounding light, LED blocked, etc, rather than
high precision gradually becoming the focus of
VLP research, ANN gets less attention. Recently,
proposed solutions mainly include fusion
network which needs to train multiple classifiers
[6], and reinforcement-learning which requires
complex iterations [7], but none of them has
achieved high accuracy. To achieve both
system robustness and high positioning
accuracy, we extend our previous work [6] and
propose a novel 3D ANN-RSS indoor VLP
system called memory-ANN which allows ANN
to get database-memory mechanism to improve
its robustness to environment. The average
positioning error of 1.04cm and 2.89cm is
experimentally achieved under environmental
interference and LED-blocked respectively in a
unit volume of 0.6×0.6×0.8m3.

Principle

Fig. 1: (a) Typical 3D indoor VLC system. (b) The used ANN models. (c) Experimental setup. (d) The VLP system testbed.
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Fig. 2: The block diagram of the proposed Memory-ANN algorithm.

As shown in Fig. 1(a), the central office (CO)
connects the core network-data transmission to
the user’s terminal via the fiber local area
network, and the control center can deliver
various services to the access point (AP) located
at individual room [8]. In our VLP system, each
LED is modulated by identification (ID) signals at
different carrier frequencies. Subsequently, the
received signal strength information from three
LEDs is captured as the input parameters of
ANN for coordinates estimation. As shown in Fig.
1(b), our original ANN structure is composed of
9 input layer nodes which represent input
parameters from the original RSS of three LEDs,
2 hidden layers with 6 nodes and 6 nodes
respectively, and 3 output layer nodes.

Fig. 2 shows the principle of the proposed
memory-ANN. Each cell contains an original
ANN structure accompanied by a memory
module and a Genetic algorithm (GA) module. A
well-trained ANN can map the corresponding
coordinates from the RSS information (P1, P2,
P3). In every processing period, the cell receives
the RSS information at that moment, calculates
the coordinates (positioning), and then updates
the memory module. The memory module is
mainly divided into three parts: MT1, MT2, and
MT3. MT1 is used to store the RSS information
for subsequent moments and save data to build
an online database. Both MT2 and MT3 are
selectively derived from the calculated ‘difCP’
curve over time which represents the
mathematical characteristics in signal strength
conversion between adjacent test moments, and
they will keep updating during the positioning
process. By learning and observing the
continuous changes of these parameters
between test moments, the cell can finally
identify whether the transformation is induced by
the detector movement or environmental
interference. After that, the cell will choose to
block the data or input it to the original ANN.
Besides, the GA module is used to deal with the
LED-blocked situation. ANN-RSS system is
dependent on the database, when an LED is

blocked by an object, the information of the
signal cannot be obtained, so the positioning of
ANN fails. When it happens, M-ANN can fuse
the offline database from the simulation model
and the online database in the memory module,
and then the GA module can obtain the similar
mathematical features of the database and
search the data efficiently which the M-ANN may
need most at that time (the missing data).

Experimental results
Fig. 1(c) illustrates the experimental setup of the
3D RSS-VLP system. In the transmitter, three
pseudo-random binary sequences (PRBS) are
mapped into three quadrature phase-shift keying
(QPSK) ID signals. Then the QPSK signals are
modulated with different carrier frequencies of
140kHz, 270kHz, and 400kHz. The transmitted
signals are produced by two arbitrary function
generators (AFG31000). The generated signals
are then combined with DC bias by three bias-
tees to drive three LEDs. These LEDs form a
triangle and are suspended at the height of 1.4m
from the ground which forms a 0.6×0.6×1.4m3

coverage area. A photodetector (PD) (Thorlabs,
PDA36A) with an integrated amplifier is placed
within the triangle region for receiving optical
signals from LEDs. A digital storage oscilloscope
(DSO, Tektronix, DSA725040D) with a sampling
rate of 25 MSa/s is used for data capture. Offline
signal processing including signal demodulation,
power measurement, and ANN training and
testing is then performed. Fig. 1(d) presents the
photos of our VLP system test bed. In our test,
100 reference points (5×20) within the triangle
area with a height of 0cm, 20cm, 40cm, 60cm
and 80 cm are selected. At each point, LED
powers are captured by 160 times (5×20×160 =
16000) to build a database for training the ANN.
We design to add light-blocking materials
between the LED and the detector to create
environmental interference to test the system
performance, and the same number of the signal
strength data samples are collected in different
disturbed environment scenarios.
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Fig. 3: 3D positioning result without (a) and with (b) the environmental interference, and with the M-ANN (c). 2D view (b) with
heights of 0cm, 20cm, 40cm, 60cm and 80cm (d), and 2D view (c) with heights of 0cm, 20cm, 40cm, 60cm and 80cm (e).

Fig. 3(a) shows the 3D positioning result of
the original ANN without the influence of
environmental interference while the black dots
represent real coordinates and the coloured dots
represent positioning coordinates in the 3D view
figure. The average positioning error is 0.86cm
that is similar to the result in our previous work
[6]. When we add light-blocking materials to
create interference, the accuracy of the original
ANN is seriously affected and degrades to
6.14cm as shown in Fig. 3(b). The 2D view of
Fig. 3(b) at different heights are shown in Fig.
3(d). The blue dots represent the real
coordinates while the red star points represent
the calculated coordinates in the 2D figure. With
the help of M-ANN, the system can resist the
interference and the average positioning error is
optimized significantly to 1.04cm. And the 3D
positioning result of M-ANN is shown in Fig. 3(c),
and Fig. 3(e) shows the 2D view of Fig. 3(c).

Unlike the schemes using image sensors,
LED-blocked is fatal to the RSS system. Fig. 4
shows the result given by M-ANN when the
LED-Blocked happens. The blue dots represent
the test coordinates where we set the LED

blocked and the red star points represent the
coordinates calculated by the GA module. The
numerical results are shown in Table.1, which
are the actual coordinates and the average of
the coordinates (each cord 20 times) given by
the GA module. Finally, we get the average
positioning error in the case of LED-blocked is
2.89cm. From the above results, we can see
that the proposed M-ANN can still maintain
precise positioning while the original ANN fails.

Conclusion
We propose a novel ANN-based deviation-
correction algorithm for a 3D indoor VLP system
to improve robustness. The memory mechanism
is introduced into our original ANN to maintain
precise positioning even when environmental
changes occur. In our experiment, the M-ANN
can achieve precise positioning with the average
accuracy of 1.04cm and 2.89cm under
environmental interference and LED-blocked
respectively. The results show that the proposed
scheme can effectively increase the robustness
of the RSS-VLP system.
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Fig. 4: The positioning result given by M-ANN with GA
module when LED is blocked.

Tab. 1: GA search results(cm)
Real Cal (mean) Real Cal (mean)

（70,30） (68.13,28.26) （40,50） (40.08,48.42)
（70,40） (69.26,40.18) （50,60） (50.66,60.96)
（70,50） (69.17,52.98) （60,50） (58.20,54.47)
（50,50） (49.05,52.50) （60,60） (59.77,62.87)
（60,40） (59.30,38.42) （70,60） (69.84,62.82)
（80,20） (78.01,20.35) （70,70） (71.74,69.50)
（80,60） (79.87,60.31) （80,40） (79.92,40.90)
（50,40） (49.37,42.30) （80,50） (79.11,52.90)
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