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Abstract Two artificial neural network (ANN) models are presented to predict power profiles over

C+L–band in presence of inter-channel stimulated Raman scattering (ISRS) and to support non-linear

interference (NLI) modeling. High prediction accuracy is obtained with maximum errors ≤ 0.1 dB over

thousands different partial loads.

Introduction
Optimization of optical networks requires the

knowledge of physical layer behavior: accurate

modeling of propagation effects is fundamental

for performance assessment of transmission sys-

tems. In the past years several analytical mod-

els accounting for both amplified spontaneous

emission (ASE) noise and non-linear interference

(NLI) impairments were proposed[1]–[5].

The ever growing internet data traffic will lead to

an increasing capacity demand and a promising

solution is to extend the standard C–band toward

the L–band, and in a longer term even beyond. In

this multi-band scenario, besides the non-linear

interaction between channels due to Kerr effect,

it becomes relevant the inter-channel stimulated

Raman scattering (ISRS), consisting in the power

transfer from higher frequency carriers to lower

frequency carriers[6]. The resulting effect is a tilt of

the power profile over frequencies which depends

on the spectral load. Consequently, upgraded an-

alytical models for NLI estimation accounting for

ISRS have been proposed[7],[8].

For applications to network control and opti-

mization we need simplified models, capable of

real-time predictions. Of particular interest are the

closed-form models (CFMs)[9]–[11] which, following

some approximations, allow to easily evaluate the

generation of non-linear interference (NLI) con-

sidering also the ISRS interaction.

In general, a quality of transmission evaluator

accounting for both linear and nonlinear effects,

considering the impact of ASE and NLI requires

a fast and accurate evaluation of power profiles,

spectrally and spatially resolved. ISRS models for

a large channel count, may not satisfy speed re-

quirements as they are based on the numerical
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solution of large set of ordinary differential equa-

tions (ODEs). Moreover, CFMs are enabled by

fitting these power profiles with simplified power

profile analytical expressions[11] and this requires

further computational effort to get the required pa-

rameters for all channels.

In the last years, machine learning (ML) has

been successfully applied in different areas of

optical communications, with a good success

in the design and analysis of Raman amplifica-

tion[12]–[15]. Based on these recent advances, to

overcome the computational complexity problem,

we propose two artificial neural network (ANN)

models to evaluate power profiles evolution over

frequency and distance. A first model is used to

predict power profiles, whilst the second one is

directly used to predict fitting parameters for the

NLI modeling[11].

We perform a comprehensive simulation study

considering different spectral loads over C+L–

band, showing very high accurate and fast predic-

tions with maximum error always below 0.1 dB.

Scenario and Datasets Generation
We consider a wavelength division multiplexing

(WDM) comb of channels over the C+L–band be-

tween 185 THz and 196 THz with 220 channels

in a 50 GHz grid, carrying 1 mW each when

turned ON. The ISRS effect is analyzed over a

single span of standard single mode fiber (SSMF)

with length Lspan=100 km and fiber intrinsic at-

tenuation coefficient α=0.21 dB/km. For ANN

training and testing, we generate two indepen-

dent datasets. To reduce the ANN complex-

ity, as proposed in[12], the training dataset is

generated grouping together 10 adjacent chan-

nel slots, resulting in 22 sub-bands of 500 GHz.

This simplification is supported by the fact that the

power profile does not change significantly over
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Fig. 1: ANN models, training and testing process for (a)
model 1 and (b) model 2.

frequency among adjacent channels, therefore

the granularity of 10 channels per sub-band is

a good trade-off between accuracy and complex-

ity. To emulate partial loads on sub-bands, three

types of datasets are generated based on differ-

ent power levels per sub-band (Psb): two power

levels with Psb=[0,10] mW (actually all channels

OFF or ON, respectively), three power levels

with Psb=[0,5,10] mW, and five power levels with

Psb=[0,2.5,5,7.5,10] mW. To consider a more re-

alistic scenario, the testing dataset is generated

on a channel-basis with channels being OFF or

ON, i.e. Pch=[0,1] mW.

For each type of dataset (training dataset with

multi-power levels and testing dataset), we ex-

tract Nloads=5000 different spectral loads with ran-

domly selected frequency position (and power

levels) for sub-bands/channels. The datasets are

generated by means of the numerical Raman

solver available within the open source library

GNPy[16] and power profiles evolution is evaluated

over frequency and distance at every kilometer.

As the channels are randomly positioned in fre-

quency, their distribution over sub-bands is non-

uniform, and this is the reason behind the choice

of considering multiple power levels in the gener-

ation of the training dataset.

Artificial Neural Network Models

In Fig. 1 the two considered ANN models are

shown together with the training and testing pro-

cess. Inputs and outputs are properly normalized

with respect to their mean and standard deviation.

In Fig. 1(a) we have the first ANN (model 1) de-

signed to predict power profiles, which receives

at the input the spectral load S = [S1, . . . , SNsb]

and the distance L. At the output it has the net

gain Gnet = [Gnet,1, . . . ,Gnet,Nsb] defined as the

difference in logarithmic units between the output

power profiles and the input spectral loads. We

set a target maximum prediction error (EMAX) ≤
0.1 dB. To achieve this goal in the first ANN we

have to split the span length into four sub-span

sections (1-10 km, 11-20 km, 21-50 km, and 51-

100 km) and to train four ANNs in parallel, as

we were not able to reach the accuracy target

with a single ANN working over the entire span.

Shorter intervals are in the first kilometers, where

the fiber experiences higher ISRS due to higher

power levels. For each section we train 20 paral-

lel and independent ANNs (for model averaging)

using random projection (RP) method with the fol-

lowing hyper-parameters values: NHL=1 hidden

layer (HL), NHN=1000 (for 1-10 km, 11-20 km, 21-

50 km) and 2000 (for 51-100 km) hidden nodes

(HNs), σ=0.1 (standard deviation for weights ini-

tialization), λ=10 (regularization parameter) and

hyperbolic-tangent as activation function. The

training is applied independently on all the three

power-levels granularity datasets.

Once trained, the ANNs are used for testing us-

ing now the testing dataset generated considering

channels, while the ANN works on sub-bands. At

the ANN input the power per sub-band is given

as the sum of the powers of the ON channels

contained in each sub-band. At the ANN out-

put the 22 net gain samples are interpolated over

220 channels that are then applied to the original

per-channel spectral load to obtain the resulting

power profiles.

Moving to the second ANN (model 2), we

need first to describe the fitting parameters intro-

duced in[11] to enable CFM with ISRS. For each

channel/sub-band, power profile evolution along

distance is assumed to be:

P (z) = P (0)× e−2α0z+
2α1
σ (exp(−σz)−1), (1)

where the triplet of coefficients {α0,α1,σ} is nu-

merically determined by fitting the actual power

profile. Such fitting procedure is based on a

dedicated cost function that weights error along
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Fig. 2: Probability density function (pdf) of EMAX of power profiles predicted using ANN model 1 considering the three power
levels granularity for the training dataset for different distance sub-span: (a) 1-10 km, (b) 11-20 km, (c) 21-50 km, and (d)

51-100 km.
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Fig. 3: Probability density functions (pdfs) of RMSE and
EMAX of power profiles obtained using ANN model 2
considering two distance ranges: (a) 1-30 km and (b)

1-Lfiber km, where Lfiber=[50-100] km.

the span: higher weights are assigned when the

power is higher, i.e. in the first kilometers of the

span, to have a more accurate fitting on the region

where most of NLI is generated.

In Fig. 1(b) we have the second ANN (model

2) that receives the same input as model 1,

but at the output it has the triplet of vectors

α0 = [α0,1, . . . , α0,Nsb], α1 = [α1,1, . . . , α1,Nsb] and

σ = [σ1, . . . , σNsb]. For ANN model 2 we only con-

sider the training dataset with two power-levels

(sub-bands ON or OFF) and a single ANN is

trained using back-propagation (BP) method with

2 HLs, 20 HNs and logistic sigmoid as activation

function. For ANN model 2 testing, we consider

only α0, α1 and σ for Lfiber=[50-100] km. Also in

this case linear interpolation is performed to ob-

tain α0, α1 and σ on a channel basis.

Simulation Results
The prediction accuracy is evaluated in terms

of root-mean-square-error (RMSE) and maxi-

mum absolute error EMAX between the predicted

power profiles Ppred and the target profiles Ptarget.

Fig. 2 shows the probability density functions

(pdfs) of the EMAX for the four sub-span sec-

tions and for the three different power granularity

datasets using ANN model 1. In this case Ptarget

is the power profile given by the numerical Ra-

man solver. For sections 1-10 km and 11-20 km

(Figs. 2(a),(b)), EMAX is always below 0.1 dB,

therefore there is no need of increasing the gran-

ularity of power levels in the training dataset. For

section 21-50 km (Fig. 2(c)), with 2 power levels

EMAX reaches values up to 0.26 dB and only with

3 and 5 power levels is below our target value.

Finally, for section 51-100 km only with 5 power

levels we are able to have all EMAX below 0.1 dB.

Fig. 3 shows the pdfs of RMSE and EMAX

in case of ANN model 2, for which Ptarget and

Ppred are the power profiles computed inserting

in Eq. (1) for each channel the triplet (α0, α1 and

σ) obtained from fitting or from ANN model 2,

respectively. Here, performances are assessed

over two ranges of distances: 1-30 km (Fig. 3(a))

where the power is higher and most of NLI gen-

eration takes place, and 1-Lfiber (Fig. 3(b)) with

Lfiber=[50-100] km. In both cases, EMAX is al-

ways below 0.1 dB with very high accuracy in

range 1-30 km.

To quantify the advantage of ANNs we com-

pared the time needed to generate the testing

dataset (5000 partially loaded power profiles over

channels) and to fit α0, α1 and σ with respect

to the time needed by the ANN to predict same

quantities. Numerical solvers ran for 9.5x105 s

and 2.5x104 s, respectively, while ANN completed

the task in few tens of seconds, satisfying the re-

quirements for real-time applications.

Conclusions
We presented two ANN models for power pro-

file prediction in support of NLI modeling over the

C+L–band in presence of ISRS, an effect strongly

dependent on input spectral loads. Considering a

vast set of thousands of partial loads, we showed

fast and highly accurate predictions, with EMAX

always below 0.1 dB. Even higher accuracy is

achieved in the first 30 km of the fiber span, where

most of NLI generation takes place. A significant

advantage in terms of computational time is found

with respect to numerical approaches .
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