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Abstract We present a novel end-to-end autoencoder-based learning for coherent optical communi-
cations using a “parallelizable” perturbative channel model. We jointly optimized constellation shaping
and nonlinear pre-emphasis achieving mutual information gain of 0.18 bits/sym./pol. simulating 64 GBd
dual-polarization single-channel transmission over 30x80 km G.652 SMF link with EDFAs.

Introduction
In modern communication systems, transceivers
typically contain a chain of digital signal process-
ing (DSP) blocks individually designed based on
analytical models. The end-to-end (E2E) neural
network (NN)-based autoencoders have become
of particular interest to improve the overall system
performance, particularly for the scenarios where
accurate models are either unknown or computa-
tionally prohibitive to use. In this approach, the
transmitter (TX), the channel, and the receiver
(RX) are implemented as a single deep NN, and
then, TX and RX are jointly trained to reproduce
the TX inputs from the RX outputs.

The autoencoder-based communication sys-
tem design has been first proposed[1] and, subse-
quently, realized for various communication sys-
tems[2]–[11]. In optical fiber communications, the
E2E learning has been applied for both inten-
sity modulation and direct detection (IM/DD) sys-
tems[5],[6],[12] and coherent systems[8]–[10],[13]; For
the latter, E2E learning is much more involved.
The nonlinear dispersive channel is typically mod-
eled by the Manakov equation and simulated by a
serial cascade of alternating linear and nonlinear
operators, known as the split-step Fourier method
(SSFM)[14]. The corresponding neural network
consists of many layers making the training pro-
cess via “back-propagation” very slow and chal-
lenging. It requires the storage of all intermediate
states, thus, making the process memory hungry.
In addition, the back-propagation through many
layers is prone to uncontrolled growth or vanish-
ing of gradients[13]. To bypass these problems,
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the one way is to approximate the channel with
simplified models. For instance, the E2E learning
is done using dispersion-free channel model[10]

or Gaussian noise model[8] which considers non-
linear distortion as an additive noise; However,
these two models do not account for channel
memory.

In this paper, we propose E2E learning via the
first-order regular perturbation (RP) model. As
we will show, RP model offers not only a quite
accurate approximation of the Manakov equation
in the power range of interest but, also, it can
be implemented in parallel branches, an architec-
ture suitable for neural networks optimization. As
a case study, we consider single-channel dual-
polarization (DP) 64 Gbaud transmission over
30 spans of 80 km standard single mode fiber
(SSMF) with lumped optical amplifiers (OAs). We
assume the linear coherent reception without any
nonlinear equalization. For a range of launch
powers, we learn optimized 64-point geometri-
cally shaped (GS-64) constellations and nonlin-
ear pre-emphasis filters maximizing the E2E mu-
tual information (MI). The training is done via
RP model but the performance is evaluated over
SSFM (as a precise channel model). We show
that in comparison to the standard 64-QAM, the
learned GS-64 constellation and waveforms in-
crease the optimal launch power by about 0.5 dB
and improve the MI from 4.95 bits/sym./pol. to
5.13 bits/sym./pol.

RP as Auxiliary Channel Model
Consider the Manakov equation describing a
DP optical signal E(z, t) = u(z, t)

√
f(z) over

a fiber-optic link with lumped amplification[14],[15].
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Fig. 1: Principal scheme of the implemented autoencoder, trained over auxiliary RP model and assessed over SSFM simulation.

Fig. 2: Principal scheme of the first-order
regular-perturbation (RP) algorithm.

f(z) = exp (−αz + αLspbz/Lspc) models the op-
tical losses α and amplification, Lsp is the fiber
span length

∂u

∂z
= −iβ2

2

∂2u

∂t2
+ i

8

9
γf(z)‖u‖2u + η(z, t),

where β2 and γ are the dispersion and Kerr non-
linearity coefficients; η(z, t) denotes the amplified
spontaneous emission noise (ASE) of OAs.

The first-order regular perturbation (RP) is an
elaborate method to approximate u(z, t) in a
weakly nonlinear regime as[15]–[17]

u(z, t) = uL(z, t) + uNL(z, t) +O(γ2),

uL(z, t) = Dz [u(0, t) + η(z, t)] ,

uNL(z, t) ≈
Nbr−1∑
m=1

Dz−mδ [Kδ,m[uL(mδ, t)]] ,

Kδ,m[u(t)] = i
8

9
γ

1− e−αδ

α
f(mδ)‖u(t)‖2u(t),

where Dz[·] = F−1
[
exp(iβ2zω

2/2)F [·]
]

is chro-
matic dispersion operator, ‖ · ‖ is 2-norm, and F
denotes Fourier transform. Fig. 2 shows the block
diagram of the above equations. The leftmost
branch gives uL(z, t), while the other branches
sum to uNL(z, t). The number of branches is
Nbr = z/δ. The smaller δ is, the more accurately
uNL(z, t) can be approximated. Each branch also
includes an additive circularly-symmetric weight
Gaussian noise ξ(z′, t) with power spectral den-
sity b z

′

Lsp
cσ2

ASE. A link can be modeled by just a
single stage (z is the link length) or few subse-
quent stages of the RP model. It is evident that a
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Fig. 3: Comparison of 3-stages RP model with the SSMF
simulation. The approximation error of the RP model is much

smaller than the total distortion.

stage of the RP model is easily parallelizable, i.e.
all branches can be computed independently and
in parallel. This allows speeding up its calculation
and so the overall E2E learning by using graphics
processing units (GPUs). Moreover, the danger of
exploding or vanishing gradients is reduced, com-
pared to sequential models like SSFM.

Let us now discuss the accuracy of RP. As a
testcase, we numerically consider single-channel
DP 64-QAM transmission at 64 Gbaud over 30
spans of 80 km SSMF. A root-raised-cosine with
roll-off factor of 0.1 is used for pulse shaping.
Manakov equation was used as a reference chan-
nel model. We define the SSMF parameters
as: α = 0.21 dB/km, β2 = −21.4 ps2/km, and
γ = 1.14 (W*km)−1. Every span was followed by
an ideal lumped OA with noise figure NF = 4 dB.

To have a more accurate model, we used 3 sub-
sequent stages of RP, each covering 10 spans
with Nbr = 100. We compare this auxiliary chan-
nel model to the precise SSFM in Fig. 3. We
plot the signal-to-noise ratio (SNR) of the received
signals after chromatic dispersion compensation
(CDC), as depicted in Fig. 1. We see that the re-
ceived SNR is quite similar for both SSFM and 3-
stages RP model in weak nonlinear regime (up to
2.5 dBm). To illustrate the approximation error of
RP, we compare the outputs of our RP model ȳRP

with the outputs of SSFM ȳSSFM with no additional
ASE noise. We characterize the approximation
error in terms of signal-to-distortion ratio (SDR),



defined as −20 log10 (‖ȳRP − ȳSSFM‖/‖ȳSSFM‖).
We see in Fig. 3 that up to 2.5 dBm, the SDR is at
least 13 dB larger than the received SNR, imply-
ing that the approximation error of the RP model
is much smaller than the total distortion in the link.

E2E Learning Procedure and the Results
Fig. 1 illustrates the proposed E2E autoencoder
including three separate neural networks:
Encoder NN: It is a single linear layer with train-
able weights θE, which maps a one-hot vector of
size 64, representing the transmitted message, to
the corresponding constellation point c ∈ C. Con-
stellation power is fixed E{‖c‖2} = 1.
Nonlinear pre-emphasis NN: It is implemented
based on the known cubic correction terms[18],[19]

∆xh/v,0 =
∑
m,n Cm,n xh/v,m · (xh/v,nx∗h/v,m+n +

xv/h,nx
∗
v/h,m+n), where xh/v,m is the m-th adja-

cent symbol in H-/V-polarization of target symbol
xh/v,0. The trainable weights θP = {Cm,n} with
|m| ≤ 10, |n| ≤ 10 are initialized according to[20].
Decoder NN: It is a dense NN with trainable
weights θD composed of size-1 complex-valued
input layer followed by 2 hidden layers, 32 ReLU
neurons each, and size-64 softmax as output
layer activation. It maps a received symbol y ∈ C
to 64 posterior probabilities P (ck|y) of each con-
stellation point ck.

Note that the TX NN was divided into two parts
to reduce training complexity and improve inter-
pretability[11],[13]. The same encoder and decoder
NNs were applied to both polarizations.

The autoencoder is trained on the RP model to
maximize the E2E mutual information (MI), i.e.,

I∗RP = 6 + max
θE,θP,θD

EX,Y {log2 P (x|y)}

where the maximization objective is the negative
categorical cross entropy. Using a large random
training sequence, the Adam optimizer[21] is used
to maximize the objective function and to obtain
the optimal θ∗E, θ∗P, θ∗D. Next, these learnt param-
eters are used to assess the performance over
SSFM simulation. To improve matching of the NN
decoder to the actual channel, θ∗D is fine-tuned on
the SSFM propagation data, maximizing the E2E
MI I∗SSFM. Finally, the MI is assessed by trans-
mission simulation of 10 newly generated random
sequences of 216 symbols over SSFM.

Fig. 4(a) shows the E2E MI optimized for differ-
ent input powers. We also plot the E2E MI op-
timized without pre-emphasis NN, neglecting the
channel memory. For each point, the standard
deviation over 10 simulation runs is also shown.
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Fig. 4: (a) MI obtained by 64-QAM, learned GS-64
constellation and by joint GS-64 and nonlinear pre-emphasis.
Examples of the learnt Constellations (b) memoryless GS-64

and (c) GS-64 + pre-emphasis.

As a reference, we plot the MI of standard 64-
QAM without pre-emphasis, evaluated with two
methods: by training the decoder NN to learn
P (x|y), and by using a kernel density estimator
(KDE) to estimate P (y|x). The latter gave larger
values, highlighting the opportunities for decoder
improvement, and is taken as a reference. We ob-
serve that the E2E learning results in a consider-
able gain. Without pre-emphasis, optimization of
the constellation shaping gives MI gain of ≈ 0.11

bits/sym./pol. and with pre-emphasis, the MI gain
increases further to ≈ 0.18 bits/sym./pol. while
the optimal power is also increased by ≈ 0.5 dB.
Conclusion
We presented a novel End-to-End learning ap-
proach optimizing geometric constellation shap-
ing and a nonlinear pre-emphasis for coherent
fiber-optic communications, resulting in a consid-
erable mutual information increase in simulation.
The proposed technique, relying on the “paral-
lelizable” regular perturbation model, can be used
for different fiber channels.
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