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Abstract We propose a novel approach to estimate reconfigurable optical add-drop multiplexers 
(ROADM) polarization-dependent loss (PDL) using the signal-to-noise ratio distribution induced by PDL. 
We show an uncertainty cut between 40% and 80% compared to datasheet in several configurations. 

Introduction 
Todays' networks are evolving towards a more 
flexible technology to meet emerging applications 
increasing demand for high capacity, and to allow 
for dynamic service creation, restoration, and 
dropping. Recent research in optical 
performance estimation has pointed to the need 
for a complete characterization of light path (LP) 
components and parameters uncertainties to 
reduce margins when estimating the 
performance of unestablished LPs[1],[2]. Indeed, in 
greenfield design, network engineers consider 
large margins to assure reliability for all the 
network life, resulting in a waste of resources. 
However, in existing networks, reducing 
components uncertainty when provisioning 
unestablished LPs allows cutting unnecessary 
system margins[3],[4]. 

With this goal in mind, in this paper, we aim to 
reduce the uncertainty due to the polarization-
dependent loss (PDL). PDL is present in 
components such as erbium-doped fiber 
amplifiers (EDFA) and more dominantly in 
reconfigurable optical add-drop multiplexers 
(ROADMs). PDL causes a signal-to-noise ratio 
(SNR) difference between the two polarization 
tributaries depending on their relative 
orientations[5]. PDL is thus a challenging 
impairment for coherent systems, particularly 
those employing numerous ROADMs[6]. As the 
polarization of light is not maintained in the fiber, 
PDL produces a random oscillation on the LP 
performance. Therefore, we require extra 
margins to guarantee the LP availability[3]. 

This paper presents a method to estimate 
ROADMs’ PDL values for an installed optical fiber 
network based on the performance monitoring 
capabilities of transponders. We use a network 
controller that collects from several transponders 
the statistical information on performance 
fluctuations induced by PDL and infers the PDL 
contribution of each different network component 
by simple regression.  

Methodology 
In this paper, we employ the per-polarization 
SNR as a performance metric without loss of 
generality[7]. We consider a transparent network 
in which each node has add and drop capability, 
and in which a central controller can collect 
information from the transceivers (TRX)[8]. We 
compute the propagation in the linear regime, i.e., 
the nonlinear Kerr effects are negligible 
compared to amplified spontaneous emission 
(ASE) noise and we suppose polarization mode 
dispersion (PMD) to be negligible. 

As sketched in Fig. 1, performance oscillates 
in time randomly because of the PDL, eventually 
generating a probability density function 
(PDF)[9],[10]. The statistical information related to 
the performance PDF, such as the mean and the 
variance can be determined and provided to the 
controller[11]. The variance and the mean well 
characterize the SNR distribution since, in the 
linear regime, we observe an almost Gaussian 
PDF[7]. Fig. 2 shows the principle of SNR-
statistics measurement-based PDL monitoring. 
In an optical network, nodes, i.e., ROADMs, add 
and drop services, and, thanks to the coherent 
receivers (RXs), each service performance can 
be monitored in terms of the per-polarization 
SNR[12]. The central controller, aware of the LP 
routes and performance statistics, can use both 
pieces of knowledge to infer information on the 
components' PDL since SNR statistics correlate 
to the PDL value of components[13]. At the 
controller, we perform a regression using the 

 
Fig. 1. Qualitative example of random oscillation of SNR. 
The coherent receiver collects SNR samples fluctuations 

and estimates SNR PDF, its variance σଶ and mean m 



 

 

variances and the means of SNR PDFs. The 
output is a real number: the investigated ROADM 
PDL value prediction. We study two 
configurations: one to retrieve the PDL added by 
the ROADMs at emission and one to retrieve the 
PDL added by the ROADM in transit.  

We first estimate the PDL added by the 
ROADM at emission, i.e., the PDL of the pair of 
wavelength selective switches (WSSs), 
responsible for adding LPs from the terminal to 
the network. Pragmatically, in Fig. 2. we target 
the regression on the PDL of the WSSs in the red 
boxes by using the LP depicted in solid red line. 
The LP is added at the ROADM investigated, 
ROADM 2, propagated along one section, and 
dropped at the next node, ROADM 3. For this 
configuration, we use as regression inputs the 
variance σଷ

ଶ and the mean mଷ of the SNR PDF 
obtained when the LP is dropped at ROADM 3.  

We also estimate the PDL added by the 
ROADM in transit, i.e., by the pair of WSSs 
responsible for routing LPs. In Fig. 2.  we target 
the regression on the PDL of the WSSs in the 
green boxes by using the LPs depicted in dashed 
and dotted green lines. Both LPs are added to the 
network through ROADM 3. From this ROADM, 
two LPs are investigated. One is dropped at 
ROADM 2 (dotted), where the variance σଶ

ଶ  and 
the mean mଶ of the SNR PDF are collected. One 
is dropped at ROADM 1 (dashed), where 
variance σଵ

ଶ  and mean mଵ of the SNR PDF are 
collected. (σଵ

ଶ, mଵ) and (σଶ
ଶ, mଶ) are used as 

inputs for the regression.  
Before moving to numerical results, we 

remark that these investigations do not interrupt 
the information flow and require propagating LPs 
for a maximum of two sections. Therefore, the 
method is non-intrusive and can work with 
already established LPs. Moreover, a probing 
strategy that allocates LPs consciously when the 
network resources (wavelengths and TRX) are 

idle can be also be envisaged. 

Data Generation Simulation Setup 
In Fig. 2, we present the simulation setup. 
Throughout all the investigations, LPs are 
propagated over ROADM-to-ROADM sections 
made of a cascade of spans, each composed by 
a single-mode fiber (SMF) with length 100 km 
and attenuation 0.23 dB/km and an EDFA.  While 
the fiber length is kept constant, the number of 
spans per section can vary depending on the 
target investigation. We consider ROADM-output 
and transmitters EDFAs with a gain of 20 dB. The 
channel power is 0 dBm. 

ROADMs at emission and in transit are 
embodied by a two WSSs cascade that emulates 
PDL without adding filtering penalty. The ROADM 
PDL values are drawn from a uniform distribution 
between 0.1 and 0.9 dB. Hence, ROADM 
datasheet standard deviation (SD) is 0.23 dB. 
EDFAs also emulate PDL; values are drawn from 
a uniform distribution between 0.05 and 0.15 dB. 
EDFA noise figure (NF) values are drawn from a 
uniform distribution between 4.6 and 5.4 dB. 

Since we assume the transmission to be 
linear, we simulated the SNR distribution by 
propagating the noise covariance matrix with the 
reversed channel method (RCM) presented in [13]. 
We used 105 random polarization rotations to 
generate PDFs. At the RX, we recovered the 
signal by zero-forcing equalization. The 
regression was trained with 200 random PDL 
values and tested with 200 different values. 
Although we tested several regression models, 
we report linear regression results only. Linear 
regression provides an accurate estimate while 
being computationally simple. 

To validate the minimum number of LPs 
required for an accurate regression, i.e., 1 LP 
(Fig.2-red) for emission and 2 LPs (Fig.2-green) 
when in transit, we investigated the PDL-value 
regression root-mean-square error (RMSE) for 

 

 
Fig. 2.  Physical layer parameters monitoring with a centralized way to use TRX information. After observing PDL-induced per-
polarization SNR oscillations we use their PDF parameters, variance σଶ and mean m which are sent to the network controller. 

The simulation link is composed of three 2-degree ROADMs. At each ROADM, a cascade of 2 WSSs emulate PDL. 
 



 

 

different inputs set sizes. For this, the transmitted 
LPs are propagated over ROADM-to-ROADM 
sections of 3 spans. Pragmatically, we increased 
the linear regression input vector size by adding 
additional LPs statistical information, (σ୩

ଶ, m୩), by 
propagating over extra sections after the target 
ROADM to see if providing additional statistics 
delivers better accuracy (k from 1 to 4, instead of 
only 1 and 2).  

To assess the accuracy of ROADM in transit 
when varying the configuration of the sections 
before and after it, we investigated the accuracy 
of the PDL regression versus the link noise ratio. 
The link noise ratio is the ratio of the noise 
accumulated in the section before the ROADM of 
interest (Fig.2-dotted) over the noise 
accumulated on the two sections before and after 
(Fig.2-dashed). We report the cases where LPs 
are propagated over a total of 10, 14 and 20 
spans between ROADM 3 and ROADM 1, and 
we swipe the position of ROADM 2. 

Model Training and Results 
Fig. 3 shows, on the left axis, the RMSE in dB for 
the regressions on ROADMs PDL values for 
transit (circles) and emission (stars) vs. the 
number of LPs used, i.e., the number of nodes 
where variances and means are extracted to feed 
the regression’s inputs. The right axis reports the 
percentage gain when comparing the regression 
RMSE against ROADM datasheet SD. For what 
concerns the ROADM at emission, the regression 
reaches an RMSE lower plateau already when 
using only one section. RMSE=0.05 dB, i.e., 80% 
gain against datasheet SD. The ROADM in 
transit, instead, by using one section, does not 
refine PDL knowledge since the RMSE equals 

the datasheet SD (0.23 dB). However, when 
using two sections, we see an RMSE=0.05 dB, 
i.e., 80% gain against datasheet SD. We note 
that, when considering extra nodes, the accuracy 
is not improved. This confirms that the 
information extracted at one node for the ROADM 
at emission and two nodes for the ROADM in 
transit provide sufficient statistics.   

For the ROADM in transit, we observe that the 
regression accuracy depends on the link noise 
ratio. Fig. 4 depicts PDL regression RMSE for 
different link noise ratios for propagations over a 
total of 10 (o), 14 (∗), and 20 (+) spans. The right 
axis, as always, reports the percentage gain 
compared to ROADM datasheet SD. We see 
that, independently of the total length, we have a 
favorable and stable PDL estimation RMSE (of 
about 0.05 dB, i.e., 80% uncertainty gain) until 
the link noise ratio reaches 0.7. In this region, we 
can substantially reduce PDL uncertainty. For 
noise ratios larger than 0.7, independently of the 
total link length, the accuracy lowers by 
increasing the link noise ratio. Yet, the RMSE is 
always below datasheet SD (lowest PDL 
uncertainty gain is about 40%). Fig. 5. shows 
scattered prediction plot for the lowest (a) and 
highest (b) link noise ratios for a total link length 
of 14 spans. In the figure, we report regression 
RMSE (red-solid) and datasheet SD (blue-
dashed). In the first case, Fig.5.a, the RMSE is 
0.05 dB, and the accuracy percentage gain is 
80%. In the second case, RMSE is 0.1 dB, and 
the percentage gain against datasheet SD is 
50%. Even if it is not reported for the sake of 
space, we note that the regression RMSE for the 
ROADM at emission does not depend on the 
accumulated noise between the two ROADMs. 

Conclusion 
A method to monitor ROADM PDL values is 
proposed. We introduced a solution requiring no 
extra physical component. The method delivers a 
more accurate knowledge of the PDL value than 
the one provided by the datasheet. We gain on 
uncertainty margins 80% for ROADMs at 
emission and in the worst case 40% for ROADMs 
in transit.  

a) Link noise ratio = 0.07 b) RMSE = 0.93 

 

Fig. 5. Predicted PDL values vs. PDL real values in the 
highest and lowest link noise ratio. We highlight regression 

RMSE in solid and datasheet SD (0.23 dB) in dashed. 

 
Fig. 3. Left: PDL estimation RMSE for ROADMs in transit 

and emission vs. the number of LPs used at the 
regression’s input. Right: RMSE gain against datasheet SD 

(0.23 dB). 

 
Fig. 4. PDL values estimation RMSE for a ROADM in 
transit vs. the ratio of noise accumulated before the 

ROADM investigated over the total noise of the 
transmission for links of 10, 14 and 20 spans. 



 

 

 
References 

 
[1] L. Velasco, A. P. Vela, F. Morales, and M. Ruiz, 

“Designing, Operating, and Reoptimizing Elastic 
Optical Networks,” J. Light. Technol., vol. 35, pp. 
513–526, 2017 

[2] P. Ramantanis, C. Delezoide, P. Layec, and S. Bigo, 
“Revisiting the calculation of performance margins in 
monitoring-enabled optical networks,” J. Opt. 
Commun. Netw., vol. 11, no. 10, pp. C67–C75, 2019 

[3] H.-M. Chin et al., “Probabilistic Design of Optical 
Transmission Systems,” J. Light. Technol., vol. 35, 
pp. 931–940, 2017 

[4] B. Huttner, C. Geiser, and N. Gisin, “Polarization-
induced distortions in optical fiber networks with 
polarization-mode dispersion and polarization-
dependent losses,” IEEE J. Sel. Top. Quantum 
Electron., vol. 6, no. 2, pp. 317–329, 2000 

[5] J. N. Damask, Polarization Optics in 
Telecommunications, Springer S. 2005. pp 298-304 

[6] L. E. Nelson et al., “Statistics of polarization 
dependent loss in an installed long-haul WDM 
system,” Opt. Express, vol. 19, no. 7, p. 6790, 2011 

[7] P. Serena et al., “The Gaussian Noise Model 
Extended to Polarization Dependent Loss and its 
Application to Outage Probability Estimation,” in 
European Conference on Optical Communication, 
ECOC, Nov. 2018 

[8] K. Christodoulopoulos et al., “Toward efficient, 
reliable, and autonomous optical networks: The 
ORCHESTRA solution [Invited],” J. Opt. Commun. 
Netw., vol. 11, no. 9, pp. C10–C24, Sep. 2019 

[9] A. Mecozzi and M. Shtaif, “The statistics of 
polarization-dependent loss in optical 
communication systems,” IEEE Photonics Technol. 
Lett., vol. 14, no. 3, pp. 313–315, 2002 

[10] N. Rossi, S. Musetti, P. Ramantanis, and S. 
Almonacil, “The Impact of Kerr Nonlinearity on the 
SNR Variability Induced by Polarization-Dependent 
Loss,” J. Light. Technol., vol. 37, no. 19, pp. 5048–
5055, 2019 

[11] Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. 
P. T. Lau, “Optical Performance Monitoring: A 
Review of Current and Future Technologies,” J. 
Light. Technol., vol. 34, no. 2, pp. 525–543, 2016 

[12] D. C. Kilper et al., “Optical Performance Monitoring,” 
in Journal of Lightwave Technology, Jan. 2004, vol. 
22, no. 1, pp. 294–304 

[13] Z. Tao, L. Dou, T. Hoshida, and J. C. Rasmussen, 
“A Fast method to simulate the PDL impact on dual-
Polarization coherent systems,” IEEE Photonics 
Technol. Lett., vol. 21, no. 24, pp. 1882–1884, 2009 

 
 


