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Abstract We present a method to classify optical transmission systems as linear or nonlinear based 
solely on signal-to-noise ratio statistics in presence of PDL-induced time-varying-performance. It obtains 
excellent accuracy (>95%), and it is proven accurate and robust under all the investigated conditions. 

Introduction 
To keep up with the capacity increase, elastic 
optical networks (EON)[1], in contrast to set-and-
forget approach, represent a promising paradigm 
that focuses on transponders' operational 
flexibility to support self-management capability. 
One of EON's key enablers is the ability to 
accurately monitor linear and nonlinear effects to 
tailor configuration settings -including modulation 
format, symbol rate, spacing, and launch power- 
and enabling automation in tomorrow's networks.  

Indeed, optical transmissions can be linear-
dominated or nonlinear-dominated[2],[3], since a 
change in the optical launch power changes the 
impairment characteristics. At high power, the 
Kerr-induced nonlinear impairments (NLI) 
dominate. At low power, the Erbium doped-fiber 
amplifiers' (EDFA) amplified spontaneous 
emission (ASE) noise sets the transmission 
quality. Optical network architects may indulge 
one regime over the other for technical whys and 
wherefores; however, we usually aspire to work 
at the sweet spot of maximum performance: the 
nonlinear threshold (NLT)[2], i.e., the optimal 
launch power maximizing the transmission 
quality and trading off linear ASE noise and NLI. 

Consequently, researchers developed 
several machine-learning-based algorithms to 
detect the operational regime and quantify 
impairments by leveraging spectral or time-
correlation properties of the received complex 
symbols or noise samples [4]–[8]. The common trait 

of these methods is to elaborate on received 
samples, which is a constraining factor if the 
computational transceiver resources are limited. 
Alternative solutions identify impairments based 
on the optical spectrum without the need to 
process receiver samples[9],[10]. These solutions 
are potentially coherent-receiver-less and 
ubiquitous. Yet, they require spectrum analyzers 
along the line, resulting in an expensive option.  

This paper introduces a computationally 
lightweight approach to discriminate between 
operational regimes (linear or nonlinear) based 
only on monitored performance and without 
introducing extra devices. The idea originates 
from observing two facts. First, terrestrial optical 
networks exhibit random performance oscillation 
due to polarization-dependent loss (PDL) 
introduced by network components, including 
EDFA and reconfigurable optical add-drop 
multiplexers (ROADM)[11],[12]. Second, the PDL is 
shown to alter in different ways the random 
distributions of the received ASE noise and 
NLI[13],[14]. Hence, monitoring the per-polarization 
signal-to-noise ratio (SNR) distribution provides 
enough information to diagnose the operating 
regime accurately.  

The solution is designed to be deployed on 
the cheap in links that encounter PDL-induced 
fluctuating performance. Indeed, the increasing 
popularity of pluggable solutions in transparent 
terrestrial optical networks makes this approach 
a suitable candidate. 

   
Fig. 1: The monitoring in brief. By observing the quality of transmission fluctuations, we derive statistical features to determine 
the operating regime, linear or nonlinear. After observing PDL-induced per-polarization SNR oscillations (a) we use their PDF 

distribution (b) after normalization (c) as a classifying feature (d). 



Methodology 
The method classifies optical transmissions as 
linear or nonlinear, i.e., operating below or above 
NLT. The steps in Fig. 1 lead to the classification. 
We observe that the PDL accumulated along the 
link (e.g., ROADMs, EDFAs) transforms the SNR 
of each polarization tributary in a random variable 
(Fig. 1.a), eventually generating a probability 
density function (PDF) (Fig. 1.b). 
We collect SNR samples to obtain a PDF 
estimate, and then we proceed to normalization 
and data labeling. PDFs are framed in a specific 
rectangle, which specifies an SNR-level 
independent bin-grid and bounds the PDF values 
from 0 to 1 (Fig. 1.c). Pragmatically, from a PDF 
(Fig. 1.b), we cut tails at a given probability 
threshold, 𝑝௟௜௠. The residual -central- part of the 
PDF is binned over a preset number of bins, 𝑁. 
This latter step removes SNR-level-related 
information. Then, every element is divided by 
the maximum value of the resulting vector. 
Eventually, we obtain an 𝑁-long vector with a 
maximum value of 1 (Fig. 1.c) which will be the 
input of the classifier. In our case 𝑁=100 and 
𝑝௟௜௠=10-3. Further investigation can be done to 
find the optimal parameters, especially 𝑝௟௜௠, 
which trades off classification performance and 
SNR collection time. Finally, every normalized 
vector is labeled with its class, “1” if linear 
(𝑃௟௔௨௡௖௛ <NLT) or “0” if nonlinear (𝑃௟௔௨௡௖௛ ≥NLT). 
After data labeling, we proceed to classification 
(Fig. 1.d), which is performed upon an initial 
training phase, i.e., supervised learning. We use 

a 𝑘-nearest neighbors (𝑘-NN, 𝑘=10) classifier. 
Before moving to numerical results, we comment 
on the key benefits of the method. First, our 
approach is based on a minimal signal 
processing grounded on the per-polarization 
SNR, hence without the need of additional 
complex computations on the received 
symbols[4]–[8]. Second, supervised learning-based 
monitoring is usually thorny to generalize to 
unseen scenarios. Indeed, training datasets must 
encompass all possible situations. However, we 
prove in this paper that the suggested method is 
highly adaptable to unseen scenarios and 
delivers excellent performance without the need 
to retrain. Indeed, by removing the SNR-level 
associated information, PDF shapes are not 
subject to substantial variations if transmission 
parameters, such as rate, spacing, or 
component’s PDL contributions, change[15]. 

Simulations and Results 
To validate the idea, we simulated many setups 
according to Fig. 2. Since the simulation of PDL 
in the nonlinear regime is particularly heavy, we 
used the Gaussian noise (GN) model extended 
to PDL, whose accuracy was validated in [15].  
In all scenarios, we use 21 Gaussian mod-format 
channels multiplex, targeting the central channel. 
We iteratively propagate over spans made by a 
standard single-mode fiber (SSMF) and an 
EDFA. After transmitter and before receiver, 
there is a ROADM in add or drop mode, i.e., a 
wavelength-selective switch (WSS) emulated by 

  
Fig. 2: Simulations setups. SSMF+EDFA spans repeat from transmitter to receiver. Depending on the setup pattern (regular 
or random) at each section a sequence of two PDL elements may emulate a ROADM (i.e., two WSS cascade). Every PDL 

element is tossed independently according to either chi-square (𝜒ଶ) or uniform (𝒰) distributions. 
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Fig. 3: SNR probability densities (Fig. 1.b) for 49 GBd and 

regular ROADM pattern at the 21st section (i.e., 21 fibers and 
7 ROADMs). Every line represent a PDL-sequence 

realization and different colors are different powers, from 
𝑃௟௔௨௡௖௛=NLT-2 (linear) to  𝑃௟௔௨௡௖௛=NLT+2 (nonlinear) 

  
Fig. 4: Normalized vector at the classifier’s input (Fig. 1.c) for 

49 GBd and regular ROADM pattern at the 21st section. 
Every line represent a PDL-sequence realization and 

different colors are different powers, from 𝑃௟௔௨௡௖௛=NLT-2 
(linear) to  𝑃௟௔௨௡௖௛=NLT+2 (nonlinear). 



a PDL element without adding filtering penalties. 
For what concern transmission line, ROADM 
work in bypass mode, hence with two WSS. By 
varying transceiver and line setups we test six 
different scenarios which we describe in the 
reminder of this section. At the transceiver, we 
operate at 49 GBd with 50 GHz spacing (0.98 
ratio) or at 69 GBd with 75 GHz spacing (0.92 
ratio). Along the line, we test different number 
and positions of the ROADM and different PDL 
generation distributions. First, we have either a 
regular ROADM pattern, in which a ROADM 
cascades a series of 3 spans, or a random 
pattern, in which we randomly insert a ROADM at 
each span with 30% likelihood (Fig. 2 yellow 
switch). Second, we change the PDL-generation 
mechanism by tossing PDL values of each PDL 
element according to either uniform (𝒰) 
distribution between 0.1 and 1 dB or chi-square 
(𝜒ଶ) distribution with 3 degrees of freedom (mean 
is 0.2130 dB and probability of exceeding 0.8 dB 
is 1.05%). For each PDL-generation mechanism, 
we investigate 20 random realizations of PDL 
elements. For every scenario, we investigate 
lightpath lengths of 12, 15, 18, and 21 spans (Fig. 
2, blue switch), and swipe power from -10 to 10 
dBm with 0.5 dBm steps. Finally, for data 
labeling, the optimal power, i.e., NLT, which 
separates linear and nonlinear regimes, is 
evaluated determining the power maximizing the 
SNR for each setup without PDL elements and 
swiping among all power levels. A total of about 
20k simulations have been carried out.  

Before moving to classification results, we 
detail an example of PDF and its normalization to 
explain the method's underlying idea. Fig. 3 
shows PDFs (like Fig. 1.b) for 49 GBd and regular 
ROADM pattern at the 21st section for five 
different powers nearby NLT. Different colors are 
different powers, while different solid lines are 
transmissions corresponding to different PDL-
generation seeds. Fig. 4 shows the normalized 
PDF (like Fig. 1.c) for the identical setup. We 
emphasize that SNR-level related information is 
removed passing from Fig. 3 to 4 and that PDFs 
are represented by 100-long vectors bounded in 

0-1. Further, Fig. 4 reveals clustering for different 
powers independently of system configuration 
scrambling. We observe that in the linear regime, 
e.g., NLT-2 dBm, PDFs are almost symmetric. 
On the contrary, in the nonlinear regime, e.g., 
NLT+2 dBm, an asymmetry is clearly visible, 
induced by the interaction PDL-Kerr effects. A 
fast transitory between the two regimes emerges, 
which makes classification attractive. 

To prove both accuracy and high adaptability 
of the method, we trained and tested with 
different scenarios, i.e., changing transmission 
and optical line parameters and, consequentially, 
changing the absolute value of the optimal launch 
power. Tab. 1 shows the results expressed by an 
accuracy matrix. Columns represent the testing 
scenario, while rows the training. On the 
diagonal, we have no values since it makes little 
meaning training and testing with the same 
dataset. At first, we see that we obtain excellent 
accuracy in every circumstance, with a minimum 
probability of correct classification of 95.6%. In 
general, we see that training with uniform and 
testing with chi-squared provides the lowest 
accuracy. However, the classification remains 
extremely reliable in all cases. Tab. 1 proves the 
good classification capabilities of the method 
and, at the same time, the possibility of learning 
and executing on different scenarios, i.e., the 
adaptability. Indeed, on top of presenting a 
computationally lightweight classifier, we deliver 
a highly versatile classification independent from 
the optical line and transceiver mode. The latter 
point might be helpful primarily to reach high-
grade accuracy when data may be scarce[16].  

Conclusions 
A new approach for regime classification (linear-
nonlinear) in PDL-impaired optical transmissions 
is proposed. Unlike other methods, it elaborates 
on per-polarization SNR samples only, promising 
to be a low complexity solution. The method 
delivers accurate classification (>95%). It 
demonstrates excellent adaptability to a change 
of network conditions, which guarantees a robust 
solution even when real-field data is scarce. 

Tab. 1: Accuracy Matrix 
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 49 GBd 
𝒰 - 97.0% 99.7% 97.6% 99.4% 99.2%  

𝜒ଶ 99.1% - 98.0% 99.5% 99.0% 98.8%  

69 GBd 
𝒰 99.8% 96.2% - 97.4% 99.4% 99.5%  

𝜒ଶ 99.3% 99.2% 99.2% - 99.3% 99.1%  
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. 49 GBd 𝒰 99.0% 96.2% 99.3% 96.9% - 99.6%  

69 GBd 𝒰 98.9% 95.6% 99.6% 96.6% 99.5% -  
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