

978-1-6654-3868-1/21/$31.00 ©2021 IEEE

Introducing Best-in-Class Service Level Agreement
for Time-Sensitive Edge Computing

Subhadeep Sahoo(1), Sébastien Bigo(2), Nihel Benzaoui(2)

(1) University of California, Davis, CA, USA, 95616, subsahoo@ucdavis.edu.
(2) Nokia Bell Labs, 91620 Nozay, France.

Abstract To provide edge computing with pre-negotiated, guaranteed time budget, we propose an

original joint optimization of compute and network resource allocations. For 20% time-sensitive

applications, we show that we could guarantee 200-times smaller service latencies while reducing DC

utilization efficiency by no more than 30%.

Introduction
5G Edge Cloud is an aggregate of small data
centers (DC) located close to the edge to host
time-sensitive applications. Part of these
applications, e.g., those relying on data analytics,
are compute hungry and require parallel
processing, conventionally based on a partition-
aggregate[1] workflow. Application requests are
partitioned into smaller jobs to be executed
simultaneously over a group of compute units
(CU). The output data are then sent to a second
group of CUs, where they get aggregated to
deliver the final output. In this process, the
workflow completion time is largely influenced by
the delay for exchanging data over the network
and possible buffering time at busy CUs.
 Several solutions have been proposed to
decrease workflow completion time through
network[2][3] or compute resource allocation[4] – [6].
In [7], we proposed Deterministic Dynamic
Network (DDN)-based just-in-time-delivery, a
joint optimization of network and compute
resource allocation. All these solutions aim at
minimizing the total completion time for all
workflows and maximize the edge-DC utilization
efficiency. But none have addressed the
challenge of providing pre-negotiated,
guaranteed completion time.
 In this paper, we propose to shift the paradigm
of optimizing edge-DC utilization efficiency into
offering best-in-class services for time-sensitive
applications with predefined service level
agreement (i.e. time budget), by enhancing the
aforementioned DDN-based just-in-time
approach with latency-awareness. We evaluate
the effectiveness of the latency-aware approach
to deliver best-in-class SLA. Naturally,
guaranteeing service level agreement (SLA) for
time-sensitive applications comes with a cost on
the completion time for non-time sensitive
workflows and on the edge-DC utilization
efficiency, which we also assess.

Latency-aware just-in-time delivery

In a DDN network[8] (Fig. 1), bandwidth, latency

(sub-ms) and jitter (sub-µs) are guaranteed

through slot reservation. Slots of a few µs are

allocated by a central scheduler in a dynamic

fashion (sub-ms)[9]. Once slots are allocated for a

given dataflow, no further switching is applied to

that flow and its delivery delay is fixed, allowing

for an accurate prediction of network latency at

any time, on any path in the edge-DC. In [7], we

proposed to leverage this predictable network

latency to deliver dataflows just-in-time[10] to be

processed by free compute resources. But this

approach did not guarantee any SLA for the

processed applications. Here, we propose to use

the deterministic nature of DDN not only to

reduce the total completion time of a group of

workflows, but also to meet pre-agreed

completion times per workflow for premium time

sensitive applications. The new latency-aware

approach works as follows:

1) We differentiate between the time-sensitive

applications and the regular applications, by

feeding them to two different queues; we

prioritize bandwidth (network resources) and

compute resources for time-sensitive requests.

2) For all workflows, we select the CUs

performing the partition and aggregate phases,

such that the load is balanced over the network.

3.a) For each non-time-sensitive workflow, we

pre-calculate the delivery delay of all flows

generated during the aggregate phase. The

highest delivery delay among them is considered

as the threshold delivery delay (Tthreshold). Then

the bandwidths of all the flows from this particular

workflow are decreased such that their delivery

delays all match Tthreshold. The released slots are

Fig.1: DDN-based edge data center (DC)

Real-Time

Scheduler

Servers

Workflows

DDN Time

slotted

optical ring DDN node

used to allow for the simultaneous execution of

other workflows in order to reduce the total

completion time for the whole group of workflows.

3.b) For each time-sensitive workflow where a

latency requirement (Tr) must be fulfilled, we set

the threshold delivery delay as the required

latency (Tthreshold ≤ Tr). Then for all flows

generated during the aggregate phase of this

particular workflow, we tune the bandwidth (Br) by

reserving as many slots as needed in the cyclic

scheduling window, in order to obtain a network

delivery latency smaller than the latency

requirement Tr. Let’s assume that Ts denotes the

duration of each slot and that R is the capacity of

the link. Therefore, each slot contains �� � �/��
unit of bandwidth. To satisfy the requirement of
the dataflow, we need to reserve N slots in a

window period (W), given by � � 	
� ��∗�� , �����.
The

s
B is guaranteed by *

s
N T bandwidth unit.

4) We map the flows over the CUs such that

the expected delivery delay of each flow matches

the remaining time before its target CU becomes

available.

Evaluation

In the following simulations, we evaluate the

effectiveness of the latency-aware approach. Our

metric is the processing Completion Time (CT)

per workflow. We also evaluate the impact of

delivering such performance for a group of

workflows on the remaining ones. Since the

DDN-based approach tries to increase

processing parallelization to reach the lowest

total completion time for a group of workflows, it

provides the allocation corresponding to the best

possible utilization of resources. Hence, we

consider the DDN-based just-in-time (JiT)

approach as the reference for the ultimate

performance that can be provided by the edge-

DC for a given set of workflow requests and

reference it under Optimal-JiT. Next, we compare

the new latency-aware approach with Optimal-

JiT . We also position the new approach w.r.t a

baseline approach aiming at delivering data as-

fast-as-possible (AFAP), for each flow – AFAP

grabs the whole available bandwidth (slots) on

the network path on a first-arrived, first-served

basis. For benchmarking the three approaches,

we use the Total Completion Time (Total-CT) for

a group of workflows (time taken from the

processing of the first to the last workflow). This

metric is a good indicator of the completion time

per workflow, and how many workflows are

processed in parallel.

Our simulation environment is a DDN-based

edge-DC (Fig.1), where 10 Gb/s servers (CUs)

are connected using a 10-node DDN ring with

four 10 Gb/s channels. For a fair comparison, we

use the same topology for the latency-aware,

Optimal-JiT and AFAP approaches. We generate

workflows with an input data, randomly

distributed between 2 to 5 GB. In the aggregate

phase, we cap the data rate of all exchanged

dataflows to 1 Gb/s.

We evaluate the cost of delivering a high SLA

for time-sensitive applications on processing

efficiency of the edge-DC. We consider a group

of 500 workflows, where 50% are time-sensitive

with an SLA, running on a 10 CUs edge-DC. Fig.

2 compares the Total-CT for all 500 workflows

with varying SLAs of 100 ms, 10 ms, 100 µs and

10 µs latency, using the latency-aware, Optimal-

JiT and AFAP approaches. Insets in Fig. 2 report

the Completion Time Probability Density

Functions (PDF) for time-sensitive workflows for

each case. They show that using the latency-

aware approach, we managed to obtain a

significantly narrower Completion Time PDF, and

strictly upper bounded by the pre-agreed latency.

In Fig. 2 we report the evolution of the Total-CT

when tightening the latency requirement.

Compared to the Optimal-JiT approach, the

latency-aware approach shows in all cases a

higher Total-CT, but only by 10 to 20% for

realistic latency requirements (≤ 100 µs). We find

that for SLAs lower than the limit of 10 ms, the

penalties affecting the coexisting non-time

sensitive applications grow from +7% to +55% on

Total-CT, as the pre-agreed latencies shorten.

Penalties are also found to increase for large

Fig. 2. Total-CT comparison using AFAP, Optimal-JiT and latency-aware
 (L-A) approaches. Insets: distributions of CT for time-sensitive workflows.

Fig. 3. Evolution of Total-CT with load, for 10ms
and 100µs pre-agreed latency requirements.

SLAs, e.g. 100 ms. This is explained by the fact

that we are forcing a latency constraint higher

than what we could obtain without differentiating

SLA across workflows, i.e., when using the

Optimal-JiT approach, at ~23 ms according to the

inset of Fig. 2. This value could be used as a

threshold to define when it is better for the

operator to let the network run free, without

forcing an SLA. It can also be observed that the

latency-aware approach performs better than the

AFAP approach, when the SLA exceeds 100 µs.

This is because the latency-aware approach

maximizes parallel workflow processing, leading

to a shorter Total-CT than AFAP in most

situations.

To assess the dependence of the penalty on

Total-CT with load, we vary the number of

workflows and report the Total-CT for all three

approaches for medium latency budgets (10 ms

and 100 µs). Fig. 3 shows that the penalty

increases super linearly with the number of

workflows. When the edge-DC load increases,

workflow parallelization becomes harder, leading

to an increase of the per-workflow Completion

Time and consequently of the Total-CT. Note that

despite this penalty increase, Total-CT using the

latency-aware approach is always well below

Total-CT with AFAP.

To investigate the relationship between edge-

DC computing capacity (processing

parallelization capability), workflow load, and the

penalty on the Total-CT, we now set the number

of workflows to 500, and vary the number of CUs

(from 40 to 160 with a step of 40) as well as the

latency agreements (100 µs and 10 µs). Fig. 4

reports the Total-CT for the Optimal-JiT and

latency-aware approaches. As expected,

whatever the number of CUs, the penalty grows

with the latency requirement. But counter-

intuitively, increasing the number of CUs leads to

a penalty increase. This means that the cost of

delivering high SLA for time-sensitive

applications increases with the size of the edge-

DC. In this case, adopting alternative strategies,

such as isolating the processing of time-sensitive

workflows in a confined part of the edge-DC,

should be considered.

To investigate the trade-off between the ratio

of time-sensitive applications and the

degradation of performance for remaining

applications, we assess the Total-CT when

varying the ratio of time-sensitive versus regular

applications. We start from a ratio of 20% which

we consider realistic and stretch it to 80%. Fig. 5

reports the Total-CT penalty of the latency-aware

approach over the Optimal-JiT one, for a high

load (2000 workflows) and a large edge-DC (80

CUs). Compared to the 50% time-sensitive

application reference use-case, the 80%

scenario shows a high impact on the Total-CT;

almost doubling it. Shifting the cursor to a ratio of

20% we observe a low penalty never exceeding

30% while reducing completion time by a factor

of 200 (23 ms obtained using the Optimal-JiT

approach against 100 µs guaranteed with the

latency-aware approach). Overall, the edge DC

operator will have to set the cursor of time

sensitive applications with respect to non-time-

sensitive applications.

Conclusion

For edge computing, where applications can

have strict latency constraints, we propose a

latency-aware joint optimization of compute and

network resource allocation to ensure a per-

application computing time within a latency

budget. We show that the cost of delivering such

SLAs has a complex, sometimes counter-

intuitive, relationship with the edge-DC load and

size. We also show that knowing the baseline

performance of the edge-DC is important, since

forcing a higher SLA can be counter-productive.

But overall, we showed that the proposed

latency-aware approach open business

opportunities to offer best-in-class service level

agreement for time-sensitive applications,

several orders of magnitude faster than over an

optimally-configured edge DC, with minimum

impact on the edge-DC efficiency.

Fig. 4. Total-CT increase with number of CUs, using the latency-aware approach
 w.r.t to the Optimal-JiT one.

Fig. 5. Penalty on Total-CT for 2000
workflows and 80CUs scenario

-1

-0.8

-0.6

-0.4

-0.2

0

0.2 0.5 0.8

P
e

n
a

lt
y
 o

n
 T

o
ta

l-
C

T

Ratio of Time-sensitive applications

10ms

100µs

0.07
0.17

0.56

0.08

0.230.51

0.11

0.29
0.52

0.12

0.37
0.60

0.22

0.55
0.82

0

100

200

300

O
p

t.
 J

iT

L-
A

 1
0

m
s

L-
A

 1
0

0
µ

s

L-
A

 1
0

µ
s

O
p

t.
 J

iT

L-
A

 1
0

m
s

L-
A

 1
0

0
µ

s

L-
A

 1
0

µ
s

O
p

t.
 J

iT

L-
A

 1
0

m
s

L-
A

 1
0

0
µ

s

L-
A

 1
0

µ
s

O
p

t.
 J

iT

L-
A

 1
0

m
s

L-
A

 1
0

0
µ

s

L-
A

 1
0

µ
s

O
p

t.
 J

iT

L-
A

 1
0

m
s

L-
A

 1
0

0
µ

s

L-
A

 1
0

µ
s

T
o

ta
l
C

o
m

p
le

ti
o

n
 T

im
e

 (
s)

10 CUs 40 CUs 80 CUs 120 CUs 160 CUs

+51% +52% +82% +60%
+23% +29% +55% +37%

+8% +11% +22% +12%

+56%
+17%

+7%

References

[1] R. Nirmalan and K. Gokulakrishnan, “Survey on Map
Reduce Scheduling Algorithms in Hadoop
Heterogeneous Environments”, in Proc. 3rd
International Conference on Inventive Computation
Technologies (ICICT), Coimbatore, India, Nov. 2018.

[2] A. Chatzieleftheriou, S. Legtchenko, H. Williams, and
Antony Rowstron, “Larry: Practical Network
Reconfigurability in the Data Center,” In Proc. of the
15th USENIX Conference on Networked Systems
Design and Implementation (NSDI'18), pp. 141-156,
Apr. 2018.

[3] J. Perry, A. Ousterhout, H. BalakrishnanD. Shah and
H. Fugal, “Fastpass: A Centralized "Zero-Queue"
Datacenter Network,” SIGCOMM Comput. Commun.
Rev, vol. 44, no. 4, pp. 307-318, Oct. 2014.

[4] N.- Kr. Sharma, C. Zhao, M. Liu, P.-G. Kannan, C. Kim,
A. Krishnamurthy and A. Sivaraman, “Programmable
Calendar Queues for High-speed Packet Scheduling,”
In Proc. of the 17th USENIX Symposium on
Networked Systems Design and Implementation, pp.
685-699, Feb. 2020.

[5] T. Levai, F. Nemeth, B. Raghavan and G. Retvari,
“Batchy: Batchscheduling Data Flow Graphs with
Service-level Objectives,” In Proc. of the 17th USENIX
Symposium on Networked Systems Design and
Implementation, pp. 633-649, Feb. 2020.

[6] Ks. Mahajan, A. Balasubramanian, A. Singhvi, S.
Venkataraman, A. Akella, A. Phanishayee and Shuchi
Chawla, “Themis: Fair and Efficient GPU Cluster
Scheduling,” In Proc. of the 17th USENIX Symposium
on Networked Systems Design and Implementation,
pp. 289-304, Feb. 2020.

[7] S. Sahoo, N. -H. Bao, S. Bigo and N. Benzaoui,
"Deterministic Dynamic Network-Based Just-in-Time
Delivery for Distributed Edge Computing," 2020
European Conference on Optical Communications
(ECOC), 2020, pp. 1-4.

[8] N. Benzaoui et al., “Deterministic Dynamic Networks
(DDN)”, Journal of Lightwave Technology, vol. 37, no.
14, pp. 3465–3474, May. 2019.

[9] M. Szczerban et al., “Real-time Control and
Management Plane for Edge-Cloud Deterministic and
Dynamic Networks,” IEEE/OSA Journal of Optical
Communication and Networking, vol. 12, no. 11, pp.
312–323, Aug. 2020.

[10] A. Ousterhout, A. Belay, and I. Zhang, “Just In Time
Delivery: Leveraging Operating Systems Knowledge
for Better Datacenter Congestion Control”, in Proc.
11th USENIX Conference on Hot Topics in Cloud
Computing, Jul. 2019.

