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Abstract A 4-node prototype of SDN-controlled disaggregated data-center network is experimentally 

demonstrated based on the nanoseconds optical switch, enabling flexible hardware resource 

provisioning and dynamic resource reallocation. Experimental results show that, based on monitoring 

statistics, real-time reconfiguration reduces the memory node access latency by 21%. 

Introduction 

Emerging cloud applications (such as scientific 

computation and web serving) require diverse 

hardware resources (including CPU, GPU, and 

memory) from data center (DC) infrastructures[1]. 

However, the fixed hardware of the server-centric 

(CPU, memory, etc.) results in hardware 

resource underutilization despite the high power 

consumption and costs. To solve these issues, 

the disaggregated DC concept was recently 

proposed, which decouples all the hardware from 

the server-unit and replaces the on-board bus by 

network interconnection[2,3]. Hence, the data 

center network (DCN) scope is extended to 

enclose the fabric interconnecting the hardware 

devices that will compose the compute nodes. 

Exploiting separated hardware resource pools, 

the disaggregated DC can achieve flexible 

resource provisioning for different applications 

and high power-efficiency during operation. 

However, there are still several challenges for the 

implementation of disaggregated DCs. At first, 

the extra access latency is introduced for the 

communication among hardware nodes. Thus, a 

low latency and high bandwidth network is critical 

for the disaggregated architecture. Secondly, 

there are much more hardware nodes to be 

interconnected, which requires a scalable 

interconnect network. Finally, massive hardware 

nodes make resource allocation difficult to find 

the optimal mapping, and dynamic requirements 

of applications demand a real-time orchestration 

system for resource reallocation. 

 Several studies have been carried out to 

implement the disaggregated DC. An emulated 

remote memory system was implemented in [4], 

but the setup is still within a server-centric, which 

lacks the connection network. In [5], the authors 

proposed a hierarchical disaggregated memory 

orchestrator based on RDMA protocol. However, 

current multi-layer electrical networks may 

degrade the application performance. A 2-node 

disaggregated prototype was implemented 

based on optical networks[6], but this prototype 

only shows a fix compute-to-memory traffic and 

no orchestration and control plane were 

employed. In our previous work, a rack-scale 

disaggregated architecture based on 

nanoseconds optical switches (NOS) was only 

numerically investigated[7].  

In this work we experimentally demonstrate 

the full operation of the NOS based 

disaggregated DC architecture empowered by a 

software-defined network (SDN) controller and 

orchestrator for reconfigurable disaggregated 

compute nodes composition. Exploiting 

 

Fig. 1: Architecture of the SDN-enabled reconfigurable disaggregated DC.  



nanoseconds SOA-based switches, the data 

plane sets up the low latency and high bandwidth 

connection among 4 disaggregated hardware 

nodes with monitoring capability. Due to the 

dynamic resource requirement, applications 

allocated to the same hardware node may occur 

in resource contention; hence degrading the 

application performance. Based on monitored 

statistics, the control plane can dynamically 

reallocate the hardware nodes to guarantee the 

performance. It is shown in the experiment that 

the end-to-end latency of accessing memory 

node is reduced by 21% based on the resource 

node reconfiguration. 

SDN-enabled disaggregated DC 

The SDN-enabled reconfigurable disaggregated 

DC architecture comprising hardware nodes, 

nanoseconds optical switches, SDN controller, 

and orchestrator is depicted in Fig. 1. In the data 

plane, there are three kinds of hardware nodes, 

including CPU, GPU, and memory nodes. All the 

hardware nodes are divided into N racks, and 

each rack consists of I CPU nodes, J GPU nodes, 

and K memory nodes (N=I+J+K), respectively. 

The N hardware nodes in a rack are connected 

by an intra-rack NOS (RNOS), while the i-th CPU 

node/ j-th GPU node/ k-th memory node in each 

rack is connected by the i-th CNOS/ j-th GNOS/ 

k-th MNOS (i=1,‧‧‧ I; j=1,‧‧‧ J; k=1,‧‧‧ K). Based on 

this flat network interconnection, the CPU node 

can access the GPU/memory node in the same 

rack with only a single hop, and at most two hops 

in a different rack with the shortest path. The 

functional blocks of CPU node are illustrated in 

Fig. 2(a). The CPU node receives the instruction 

from the control plane to send network statistics 

by means of a customized agent that enables 

gRPC-based SDN control at the hardware 

devices. There is also a minimal local memory in 

the CPU node for the running operation system 

and necessary data caching. Once accessing the 

memory node, the read/writing instruction of a 

logical memory address is sent to PCIe 

processing module at first. The memory mapping 

table from logical to physical address is stored in 

the memory management unit (MMU). According 

to the MMU information, the physical memory 

address of the target data is added by the packet 

encoder, and the instruction is encoded as an 

optical packet. Fig. 2(b) shows functional blocks 

of the memory node. The received instruction 

from the CPU node is processed by the memory 

controller (MC). If the target data is stored in the 

cache space, then is directly accessed and send 

back to the CPU node. Otherwise, the MC need 

to access the target memory address of on-board 

memory resource via the DMA engine. The 

optical flow control protocol is applied in the NOS 

based disaggregated architecture to solve the 

packet contention among hardware nodes[8]. In 

the case of packet contention, the packet with 

higher priority is forwarded by the NOS, while the 

others are blocked. The ACK/NACK signal is 

generated by switch controller and sent back to 

source hardware node for releasing or 

retransmitting the packet. More details about the 

structure of NOS can be found in [7]. 

    The orchestrator, which resides on top of the 

control plane, is responsible for setting up the 

Disaggregated Compute Nodes (DiCN) based on 

application request. Each DiCN consists of 

variable kinds/amounts of hardware nodes, and 

can run multiple applications. The SDN controller 

receives the instruction coming from the 

orchestrator through the Northbound interface 

(NBI), which implements the Transport API (T-

API) protocol[9]. According to the application 

requirements, the Provisioning Manager (PM) 

relies on the Topology Manger and the Path 

Computation modules to select the hardware 

nodes to compose the DiCN and their 

interconnection, then it triggers the configuration 

of hardware nodes through the gRPC-based 

Southbound interface (SBI). This configuration is 

enabled in the data plane via the SDN Agent of 

each node. During applications runtime, the 

agents collect statistics of the hardware nodes 

and send them to the Monitoring Manager (MM) 

 

Fig. 2: Functional blocks of (a) CPU node and (b) memory node. (c) Experimental setup. 



of the controller (via the SBI). If detecting the 

performance degradation, the reconfiguration 

manager (RM) dynamically reallocates hardware 

nodes of DiCN. Both the orchestrator and SDN 

controller are customized for the disaggregated 

DC infrastructure. This is because existing 

technologies cannot cope with the DiCN setup, 

management, and reconfiguration nor with its 

stringent operational requirements (such as 

monitoring latency and scalability). 

Experimental setup and results 

The experimental setup to demonstrate the SDN-

enabled disaggregated DC architecture is shown 

in Fig. 2(c). The data plane consists of 2 CPU 

nodes (CPU1 and CPU2), 2 memory nodes 

(Mem1 and Mem2), and one 4-port NOS. All the 

hardware nodes are implemented based on a 

micro-board and a Xilinx UltraScale board, 

connecting to by the PCIe Gen3 bus. The CPU 

and memory of micro-board is applied as 

hardware nodes, and the processing modules 

are implemented on the FPGA. Each hardware 

node is equipped with two 10Gb/s SFP+ 

transceivers to connect to the NOS and the other 

connects to the NOS switch controller (Xilinx 

Vertex-7). The lossless 4-port NOS is a 

broadcast and select switch based on SOA gates 

and amplifiers. The processing clock frequency of 

all the hardware nodes is synchronized by the 

switch controller for fast clock and data recovery. 

The CPU node processes data with a 64-bit width 

at 156.25MHz. The payload length of optical 

packet is set as 64 bytes as the typical length of 

cache line in current computer architecture. 

 The SDN controller sends periodic polling 

requests for monitoring network statistics. The 

packets from control plane to configure DiCNs 

and acknowledgement signal from SDN agent 

are shown in Fig. 3(a). It is found that the 

orchestrator takes ≈0.98ms to send the 

instruction to controller, and 1.2ms for the 

controller to receive the network statistics. It is 

shown that two DiCNs are set up sharing the 

same memory node (Mem1): DiCN1 includes 

CPU1 and Mem1, and DiCN2 consists of CPU2 

and Mem1. The requests (REQ) of memory node 

access from two DiCNs and the processing of 

switch controller are illustrated in Fig. 3(b). The 

REQ priority of CPU1 is 1 while the REQ priority 

of CPU2 is 2 (smaller number is higher priority). 

As the configured memory node of two DiCNs is 

the same, both CPU nodes send REQ with a 

destination of Mem1 to the switch controller. With 

a higher priority, CPU1 packet is successfully 

forwarded, while CPU2 packet is blocked and the 

switch controller sends a response (RSP) of 

NACK to CPU2 for packet retransmission. The 

retransmission costs higher network latency, 

degrading the performance of application running 

in the DiCN2. The monitored statistics is 

illustrated in Fig. 3(c), in which the hexadecimal 

“F” is used to represent the decimal point in 

gRPC packets. It is shown that, under the initial 

configuration (Mem1 is shared by CPU1 and 

CPU2), the end-to-end latency of accessing 

memory node is 479.4ns for the DiCN2 and 

378.6ns for DiCN1. The monitored statistics 

trigger the RM of SDN controller to reallocate 

Mem2 to CPU2, thus the DiCN2 is reconfigured as 

Mem2 and CPU2, as shown in Fig. 3(c).   

    After the hardware node reconfiguration, the 

CPU1 and CPU2 send the REQ to the switch 

controller with destination Mem1 and Mem2, 

respectively, as shown in Fig. 3(b). All packets 

from CPU1 and CPU2 are successfully forwarded 

to the memory nodes, and only ACK signals are 

sent back to CPU nodes. Fig. 3(c) shows the 

monitored statistics after reconfiguration (Mem2 

is allocated to CPU2). The end-to-end latency of 

accessing memory node is reduced to 378.6ns 

for DiCN2. Thus, benefiting from the automatic 

dynamic resource reconfiguration, an end-to-end 

latency improvement of 21% is achieved in the 

disaggregated data plane network. 

Conclusions 

We have experimentally demonstrated an SDN-

enabled reconfigurable disaggregated DC 

architecture based the NOS. The implemented 

prototype can flexibly reconfigure allocated 

hardware nodes based on network statistics. 

Based on the monitoring and dynamic resource 

reallocation, the latency of accessing memory 

node achieves an improvement of 21%. 

  

Fig. 3: (a) Packets of DiCN configuration from control plane. (b) Request processing of the switch controller before and after 
reconfiguration. (c) Monitored statistics of the data plane before and after reconfiguration.  
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