
978-0-7381-4679-9/21/$31.00 ©2021 IEEE

Experimental Demonstration of SDN-enabled Reconfigurable
Disaggregated Data Center Infrastructure

Xiaotao Guo(1), Fernando Agraz(2), Xuwei Xue(1), Bitao Pan(1), Albert Pagès(2), Shaojuan Zhang(1),
Georgios Exarchakos(1), Salvatore Spadaro(2), Nicola Calabretta(1)

(1) Institute of Photonic Integration, Eindhoven University of Technology, Netherlands, x.guo@tue.nl
(2) Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract A 4-node prototype of SDN-controlled disaggregated data-center network is experimentally

demonstrated based on the nanoseconds optical switch, enabling flexible hardware resource

provisioning and dynamic resource reallocation. Experimental results show that, based on monitoring

statistics, real-time reconfiguration reduces the memory node access latency by 21%.

Introduction

Emerging cloud applications (such as scientific

computation and web serving) require diverse

hardware resources (including CPU, GPU, and

memory) from data center (DC) infrastructures[1].

However, the fixed hardware of the server-centric

(CPU, memory, etc.) results in hardware

resource underutilization despite the high power

consumption and costs. To solve these issues,

the disaggregated DC concept was recently

proposed, which decouples all the hardware from

the server-unit and replaces the on-board bus by

network interconnection[2,3]. Hence, the data

center network (DCN) scope is extended to

enclose the fabric interconnecting the hardware

devices that will compose the compute nodes.

Exploiting separated hardware resource pools,

the disaggregated DC can achieve flexible

resource provisioning for different applications

and high power-efficiency during operation.

However, there are still several challenges for the

implementation of disaggregated DCs. At first,

the extra access latency is introduced for the

communication among hardware nodes. Thus, a

low latency and high bandwidth network is critical

for the disaggregated architecture. Secondly,

there are much more hardware nodes to be

interconnected, which requires a scalable

interconnect network. Finally, massive hardware

nodes make resource allocation difficult to find

the optimal mapping, and dynamic requirements

of applications demand a real-time orchestration

system for resource reallocation.

 Several studies have been carried out to

implement the disaggregated DC. An emulated

remote memory system was implemented in [4],

but the setup is still within a server-centric, which

lacks the connection network. In [5], the authors

proposed a hierarchical disaggregated memory

orchestrator based on RDMA protocol. However,

current multi-layer electrical networks may

degrade the application performance. A 2-node

disaggregated prototype was implemented

based on optical networks[6], but this prototype

only shows a fix compute-to-memory traffic and

no orchestration and control plane were

employed. In our previous work, a rack-scale

disaggregated architecture based on

nanoseconds optical switches (NOS) was only

numerically investigated[7].

In this work we experimentally demonstrate

the full operation of the NOS based

disaggregated DC architecture empowered by a

software-defined network (SDN) controller and

orchestrator for reconfigurable disaggregated

compute nodes composition. Exploiting

Fig. 1: Architecture of the SDN-enabled reconfigurable disaggregated DC.

nanoseconds SOA-based switches, the data

plane sets up the low latency and high bandwidth

connection among 4 disaggregated hardware

nodes with monitoring capability. Due to the

dynamic resource requirement, applications

allocated to the same hardware node may occur

in resource contention; hence degrading the

application performance. Based on monitored

statistics, the control plane can dynamically

reallocate the hardware nodes to guarantee the

performance. It is shown in the experiment that

the end-to-end latency of accessing memory

node is reduced by 21% based on the resource

node reconfiguration.

SDN-enabled disaggregated DC

The SDN-enabled reconfigurable disaggregated

DC architecture comprising hardware nodes,

nanoseconds optical switches, SDN controller,

and orchestrator is depicted in Fig. 1. In the data

plane, there are three kinds of hardware nodes,

including CPU, GPU, and memory nodes. All the

hardware nodes are divided into N racks, and

each rack consists of I CPU nodes, J GPU nodes,

and K memory nodes (N=I+J+K), respectively.

The N hardware nodes in a rack are connected

by an intra-rack NOS (RNOS), while the i-th CPU

node/ j-th GPU node/ k-th memory node in each

rack is connected by the i-th CNOS/ j-th GNOS/

k-th MNOS (i=1,‧‧‧ I; j=1,‧‧‧ J; k=1,‧‧‧ K). Based on

this flat network interconnection, the CPU node

can access the GPU/memory node in the same

rack with only a single hop, and at most two hops

in a different rack with the shortest path. The

functional blocks of CPU node are illustrated in

Fig. 2(a). The CPU node receives the instruction

from the control plane to send network statistics

by means of a customized agent that enables

gRPC-based SDN control at the hardware

devices. There is also a minimal local memory in

the CPU node for the running operation system

and necessary data caching. Once accessing the

memory node, the read/writing instruction of a

logical memory address is sent to PCIe

processing module at first. The memory mapping

table from logical to physical address is stored in

the memory management unit (MMU). According

to the MMU information, the physical memory

address of the target data is added by the packet

encoder, and the instruction is encoded as an

optical packet. Fig. 2(b) shows functional blocks

of the memory node. The received instruction

from the CPU node is processed by the memory

controller (MC). If the target data is stored in the

cache space, then is directly accessed and send

back to the CPU node. Otherwise, the MC need

to access the target memory address of on-board

memory resource via the DMA engine. The

optical flow control protocol is applied in the NOS

based disaggregated architecture to solve the

packet contention among hardware nodes[8]. In

the case of packet contention, the packet with

higher priority is forwarded by the NOS, while the

others are blocked. The ACK/NACK signal is

generated by switch controller and sent back to

source hardware node for releasing or

retransmitting the packet. More details about the

structure of NOS can be found in [7].

 The orchestrator, which resides on top of the

control plane, is responsible for setting up the

Disaggregated Compute Nodes (DiCN) based on

application request. Each DiCN consists of

variable kinds/amounts of hardware nodes, and

can run multiple applications. The SDN controller

receives the instruction coming from the

orchestrator through the Northbound interface

(NBI), which implements the Transport API (T-

API) protocol[9]. According to the application

requirements, the Provisioning Manager (PM)

relies on the Topology Manger and the Path

Computation modules to select the hardware

nodes to compose the DiCN and their

interconnection, then it triggers the configuration

of hardware nodes through the gRPC-based

Southbound interface (SBI). This configuration is

enabled in the data plane via the SDN Agent of

each node. During applications runtime, the

agents collect statistics of the hardware nodes

and send them to the Monitoring Manager (MM)

Fig. 2: Functional blocks of (a) CPU node and (b) memory node. (c) Experimental setup.

of the controller (via the SBI). If detecting the

performance degradation, the reconfiguration

manager (RM) dynamically reallocates hardware

nodes of DiCN. Both the orchestrator and SDN

controller are customized for the disaggregated

DC infrastructure. This is because existing

technologies cannot cope with the DiCN setup,

management, and reconfiguration nor with its

stringent operational requirements (such as

monitoring latency and scalability).

Experimental setup and results

The experimental setup to demonstrate the SDN-

enabled disaggregated DC architecture is shown

in Fig. 2(c). The data plane consists of 2 CPU

nodes (CPU1 and CPU2), 2 memory nodes

(Mem1 and Mem2), and one 4-port NOS. All the

hardware nodes are implemented based on a

micro-board and a Xilinx UltraScale board,

connecting to by the PCIe Gen3 bus. The CPU

and memory of micro-board is applied as

hardware nodes, and the processing modules

are implemented on the FPGA. Each hardware

node is equipped with two 10Gb/s SFP+

transceivers to connect to the NOS and the other

connects to the NOS switch controller (Xilinx

Vertex-7). The lossless 4-port NOS is a

broadcast and select switch based on SOA gates

and amplifiers. The processing clock frequency of

all the hardware nodes is synchronized by the

switch controller for fast clock and data recovery.

The CPU node processes data with a 64-bit width

at 156.25MHz. The payload length of optical

packet is set as 64 bytes as the typical length of

cache line in current computer architecture.

 The SDN controller sends periodic polling

requests for monitoring network statistics. The

packets from control plane to configure DiCNs

and acknowledgement signal from SDN agent

are shown in Fig. 3(a). It is found that the

orchestrator takes ≈0.98ms to send the

instruction to controller, and 1.2ms for the

controller to receive the network statistics. It is

shown that two DiCNs are set up sharing the

same memory node (Mem1): DiCN1 includes

CPU1 and Mem1, and DiCN2 consists of CPU2

and Mem1. The requests (REQ) of memory node

access from two DiCNs and the processing of

switch controller are illustrated in Fig. 3(b). The

REQ priority of CPU1 is 1 while the REQ priority

of CPU2 is 2 (smaller number is higher priority).

As the configured memory node of two DiCNs is

the same, both CPU nodes send REQ with a

destination of Mem1 to the switch controller. With

a higher priority, CPU1 packet is successfully

forwarded, while CPU2 packet is blocked and the

switch controller sends a response (RSP) of

NACK to CPU2 for packet retransmission. The

retransmission costs higher network latency,

degrading the performance of application running

in the DiCN2. The monitored statistics is

illustrated in Fig. 3(c), in which the hexadecimal

“F” is used to represent the decimal point in

gRPC packets. It is shown that, under the initial

configuration (Mem1 is shared by CPU1 and

CPU2), the end-to-end latency of accessing

memory node is 479.4ns for the DiCN2 and

378.6ns for DiCN1. The monitored statistics

trigger the RM of SDN controller to reallocate

Mem2 to CPU2, thus the DiCN2 is reconfigured as

Mem2 and CPU2, as shown in Fig. 3(c).

 After the hardware node reconfiguration, the

CPU1 and CPU2 send the REQ to the switch

controller with destination Mem1 and Mem2,

respectively, as shown in Fig. 3(b). All packets

from CPU1 and CPU2 are successfully forwarded

to the memory nodes, and only ACK signals are

sent back to CPU nodes. Fig. 3(c) shows the

monitored statistics after reconfiguration (Mem2

is allocated to CPU2). The end-to-end latency of

accessing memory node is reduced to 378.6ns

for DiCN2. Thus, benefiting from the automatic

dynamic resource reconfiguration, an end-to-end

latency improvement of 21% is achieved in the

disaggregated data plane network.

Conclusions

We have experimentally demonstrated an SDN-

enabled reconfigurable disaggregated DC

architecture based the NOS. The implemented

prototype can flexibly reconfigure allocated

hardware nodes based on network statistics.

Based on the monitoring and dynamic resource

reallocation, the latency of accessing memory

node achieves an improvement of 21%.

Fig. 3: (a) Packets of DiCN configuration from control plane. (b) Request processing of the switch controller before and after
reconfiguration. (c) Monitored statistics of the data plane before and after reconfiguration.

References

[1] W. Mulia, N. Sehgal, S. Sohoni, J. Acken, C.
Stanberry, and D. Fritz, “Cloud Workload
Characterization,” IETE Technical Review, vol. 30, no.
5, pp. 382-397, 2013.

[2] R. Lin, Y. Cheng, M. D. Andrade, L. Wosinska and J.
Chen, "Disaggregated Data Centers: Challenges and
Trade-offs," in IEEE Communications Magazine, vol.
58, no. 2, pp. 20-26, 2020.

[3] P. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker, “Network
requirements for resource disaggregation,” in 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Georgia, pp. 249–264,
2016.

[4] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker, “Network support for resource
disaggregation in next generation datacenters,” in 12th
ACM Workshop on Hot Topics in Netwworks (HotNets-
XII), Maryland, 2013.

[5] W. Cao and L. Liu, "Hierarchical Orchestration of
Disaggregated Memory," in IEEE Transactions on
Computers, vol. 69, no. 6, pp. 844-855, 2020.

[6] V. Mishra, J. L. Benjamin and G. Zervas, "MONet:
heterogeneous Memory over Optical Network for
large-scale data center resource disaggregation," in
IEEE/OSA Journal of Optical Communications and
Networking, vol. 13, no. 5, pp. 126-139, 2021.

[7] X. Guo, F. Yan, X. Xue, B. Pan, G. Exarchakos and N.
Calabretta, "QoS-aware data center network
reconfiguration method based on deep reinforcement
learning," Journal of Optical Communications and
Networking, vol. 13, no. 5, pp. 94-107, 2021.

[8] W. Miao, S. Di Lucente, J. Luo, H. Dorren, and N.
Calabretta, "Low latency and efficient optical flow
control for intra data center networks," Optics express,
vol. 22, no. 1, pp. 427-434, 2014.

[9] TAPI – Open Transport Configuration and Control
(OTCC),

https://wiki.opennetworking.org/display/OTCC

/TAPI, accessed on May 2021

