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Abstract A common approach to facilitate the integration/control of disaggregate/legacy optical 
networks is developed with the aid of a functional block-based disaggregation (FBD) model and TAPI. 
Integration/control of heterogeneous Telecom and Data Center optical network resources, models, and 
APIs are demonstrated with a disaster recovery scenario. 

Introduction 
Open and disaggregate reconfigurable optical 
add/drop multiplexers (ROADM) technologies 
promise to enable Telecom network operators to 
flexibly select or replace desired functions in 
optical networks with lower capital expenditures 
and operating expenditures[1]-[3]. This is also 
beneficial to operators in case of failure/disaster 
recovery[4],[5]. OpenROADM was introduced to 
model the disaggregate ROADM and enhance 
multivendor interoperability[6]-[8]. In addition, 
studies towards disaggregate and open data 
center (DC) optical networks have been 
conducted[9]-[11]. ONF transport API (TAPI) 
provides a unified model that facilitates 
connectivity services across networks[12]-[14]. For 
disaggregate optical networks, a functional block-
based disaggregation (FBD) model has been 
proposed to describe the entire internal 
structures and corresponding constraints of 
disaggregate ROADMs at the component level, 
e.g., wavelength selective switch (WSS), 
wavelength blocker, optical amplifier, splitter, 
coupler, etc[15]. By introducing mapping capability 
between the FBD and OpenROADM device 
model, automated node structure update, e.g., 
inserting a new blade, has been  demonstrated[16]. 
Furthermore, an FBD-based blade abstraction 
interface (FBD-BAI) has been introduced to unify 
blade control and ease the use of diverse blades 
in heterogeneous ROADMs[17]. However, our 

previous studies[15]-[17] merely focused on 
disaggregate Telecom optical networks, the 
diversity in DC optical networks were not tackled.  

In this paper, extending our works[15]-[17], we 
investigate a common approach to and for the 
first time we demonstrate the integration and 
control of heterogeneous optical networks in both 
Telecom and DC scenarios with the aid of FBD 
and TAPI. We demonstrate large-scale 
heterogenous resource integration/control to 
extend the scope of optical path services and 
ease emergency integration/control of surviving 
resources in a disaster recovery scenario. 
A Common approach for diverse Telecom/DC 
network integration with aid of FBD and TAPI 
Fig. 1 illustrates such an approach with a 
conceptual reference model, mainly from a 
modelling perspective from the device to domain 
levels. With this approach, we can handle the 
diversities in the underlying vendors' hardware 
products and upper different network integrators’ 
coexisting device/network models. To ease the 
integration of different hardware products also 
the models at different levels and achieve the 
integrated control, FBD-BAI[17] and model 
translation middle-ware (e.g., mappers) between 
different models are introduced, respectively. For 
hardware vendors such as blades or legacy 
ROADMs, FBD-BAI enables the wide application 
of the same hardware products in various 
scenarios without developing new APIs. For 

 
Fig. 1: Reference model for integration/control of heterogeneous Telecom/DC optical networks aided by FBD-BAI & TAPI 
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network integrators, with the FBD model and FBD 
mappers, the underlying hardware can be 
handled in a unified and abstracted way, which 
results in simplified systems. For Telecom and 
DC operators, with TAPI and TAPI-mappers, the 
integration and control of Telecom/DC optical 
networks can be achieved, which facilitates the 
large-scale resource utilization. 
Generalized node structure for Telecom & DC 
To support diverse hardware products and 
device/network models in different scenarios (Fig. 
1), we improve upon previous works[15]-[17] and 
develop a generalized FBD-based node structure 
as shown in Fig. 2. On the bottom of Fig. 2, the 
FBD-BAI serves as a unified interface that 
bridges the FBD-based blade models and 
diverse types of blade products where the FBD-
BAI blade adapter wraps different vendor 
proprietary APIs. On the top of Fig. 2, the device 
model mappers (e.g., Device Model A and B 
mappers, etc.) performs automated generation 
and translation of different device models. With 
this node structure, different types of Telecom 
optical nodes and intra-DC optical networks can 
be operated based on a common approach. As 
shown in Fig. 2 (right), the FBD model can be 
employed as both the device and network models. 
In addition, the FBD model can be employed to 
directly model and create the SDN system of the 
intra-DC optical network that is abstracted as a 
hyper node. The integration and control of 
Telecom/DC networks are demonstrated later. 
TAPI/TAPI-mappers in Telcom/DC integration 
As shown in Fig. 1, in future open and 
disaggregated network systems, diverse network 

models will coexist and must be handled in a 
unified manner. TAPI offers users or upper-level 
systems such a unified interface to facilitate the 
application of the underlying networks[12]-[14]. In 
line with TAPI, we implement TAPI-mappers to 
first perform a simple modelling translation 
between the network models and TAPI (Fig. 3). 
After defining the TAPI inter-domain topology and 
service interface points (SIP), as shown in Fig. 3a, 
the mappings between TAPI’s SIPs/node-edge-
points and the node interfaces in each domain 
are defined (Fig. 3b). The TAPI-mappers of FBD 
and OpenROADM are demonstrated later. 
Implementation and demonstrations 
Fig. 4 shows the demonstration setup which 
comprises a heterogenous data-plane (D-plane) 
and a control/management-plane (C/M-plane) 
with different device/network models. In the D-
plane, four ROADMs A/B/C/D were employed. 
Legacy ROADMs A and D were two WSS-based 
vendor-x systems, and C was a wavelength-
blocker-based vendor-y system. In addition, a 
disaggregate ROADM B was assembled with two 
WSS single-component-type blades and two 
EDFA-array blades to form a directional and 
colourless ROADM. In the middle of the D-plane, 
a simple DC optical network was constructed 
with: (i) two optical cross-connects (OXC), one 
was a core OXC for the ADD/DROP of trans-
domain paths, and the other was a top of rack 
(ToR) OXC for end-host connections, (ii) AWG-
based Mux/DeMux,  and (iii) EDFA arrays. It was 
assumed that after a disaster, to perform swift 
disaster recovery, hybrid node A (highlighted with 
a damage mark) was damaged and attached with 

 
Fig. 3: TAPI topology/mappers in integration/control of heterogenous optical networks spanning from Telecom to DC. (a) 

TAPI topology of heterogenous domain with different device/network models, (b) TAPI mappers of individual networks 
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Fig. 2: Unified FBD-based nodal structure in Telecom and DC optical networks 
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a third-party WSS blade to replace the damaged 
DROP in the original node[17]. Nodes A and B 
formed Domain 1. The surviving nodes C and D 
formed Domain 2. They were interconnected with 
the DC domain to create an emergency optical 
network in the disaster area to recover 
communication. Optical supervisory channel 
(OSC) handshake units[4] were used to bypass 
the vendor OSC signals and enable the links 
between the ROADMs of different vendors.  

In the C/M-plane, we implemented the 
aforementioned generalized FBD framework for 
each node. The OpenROADM (including 
mappers) and FBD device/network models were 
used for Domains 1 and 2, respectively. The FBD 
device model was used for the DC domain which 
was treated as a hyper node X. The TAPI/TAPI-
mappers-enabled domain SDN controllers (Ctlr) 
and an orchestrator (Orch) were implemented to 
provision trans-domain path traversing 
heterogeneous Telecom/DC optical networks.  

With this C/M-plane, two trans-domain paths, 
<A, D> and <B, X>, with the center-frequency of 
195.20 and 195.30 THz and 100 GHz slot-width, 
and a locally FBD SDN controlled intra-DC path 
were successfully established. In the D-plane, Fig. 
4 plots the monitored spectrums after the 
boosters of nodes A and B, and before the pre-
AMPs of nodes C and D, which demonstrates the 
successful path provisioning across the 
heterogeneous Telecom/DC optical networks. In 
the C/M-plane, the logs for establishing the trans-
domain path <A, D> are shown from (1) to (4) on 

the top of Fig. 4 for example. (1) highlights the 
TAPI connectivity-service request, including the 
experimental extension of TAPI YANG for center-
frequency and slot-width specification, as well as 
the topology-constraint, which specifies the 
border node edge points along the path’s route.  
(2) shows three segment configurations one for 
each domain, which was executed at TAPI Orch. 
(3) shows the responses of the TAPI mapper in 
the TAPI server and FBD blue-box (BB) X for the 
configuration of the DC segment at DC-SDN Ctlr 
as an example. (4) details blade configuration via 
the FBD-BAI performed by the FBD-BAI operator 
in BB-X. Note that the messages for path 
provisioning are omitted due to space limitations. 
Open issues, e.g., the computation for the trans-
domain paths and physical impairment issues, 
are left as future work.  

Conclusions 
To bridge research in Telecom and DC fields, we 
demonstrate a common approach to integrate/ 
control optical networks with diverse hardware 
products and device/network models with the aid 
of FBD and TAPI. This is beneficial in terms of 
extending the scope of optical path services and 
enhancing optical network resiliency. 
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Fig. 4: Experiment of integration/control of heterogenous Telecom and DC optical networks aided by TAPI and FBD 
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"connectivity-constraint": {
"service-request-type": "OCS",
"central-frequency": "195200000",
"spectrum-bandwidth": "100000"

},
"topology-constraint": [
{

"local-id": "1",
"include-topology": "00000000-0
"include-node": "c0000001-0001
"include-node-edge-point": "c00
"local-id": "2",
"include-topology": "00000000-0
"include-node": "c00000dc-0001
"include-node-edge-point": "c00
"local-id": "3",
"include-topology": "00000000-0
"include-node": "c00000dc-0001
"include-node-edge-point": "c00
"local-id": "4",
"include-topology": "00000000-0
"include-node": "c0000002-0001

TAPI Service Req  1
TAPI-Orch;
[SEND] `create-ocs-lightpath-connect

UUID=[DDDD1111-0000-0000-000
- 1: proto=[OCS] sip=[UNI1] node=
- 2: proto=[OCS] sip=[NNI1] node=

central-frequency=[195200000] spe
Request [http://ocs1-ctrl.example.com
[RECEIVE] `create-ocs-lightpath-conn

[SEND] `create-ocs-lightpath-connect
UUID=[DDDD1111-0000-0000-000
- 1: proto=[OCS] sip=[NNI1] node=
- 2: proto=[OCS] sip=[NNI2] node=

central-frequency=[195200000] spe
Request [http://ocsx-ctrl.example.com
[RECEIVE] `create-ocs-lightpath-conn

[SEND] `create-ocs-lightpath-connect 
UUID=[DDDD1111-0000-0000-000
- 1: proto=[OCS] sip=[NNI2] node=
- 2: proto=[OCS] sip=[UNI7] node=

central-frequency=[195200000] spe
Request [http://ocs2-ctrl.example.com

3 Segs Est byTAPI Orch
DC-TAPI-Server:
[RECEIVE] `create-ocs-lightpath-c
Configure DC create through west
{"status":"done"}Action = 1 (0: dele
UUID = DDDD1111-0000-0000-00

BB-X:
[Generate_Configure_Blade_Via_F
message_session_id=1 total_num_
##id=1 component_id=1 func=OXC
total_num_of_parameters=5
####para=SETPATH
####para=IN1
####para=OUT3
####para=195.2
####para=100
##id=2 component_id=3 func=EDF
total_num_of_parameters=5
####para=SETPATH
####para=IN1
####para=OUT1
####para=195.2
####para=100

DC SDN Control (FBD)
Blade-Operator:
[FBD-BAI-Blades-Oper-Get-Blade-Conf

[FBD-BAI-Blades-Oper-Push_Blade_DB

[FBD-BAI-Blades-Oper-Push_Blade_Ov

[FBD-BAI-Blades-Oper-Config-Blade-RP
================
The 1 component configuration info 
Got component_id: 1
Got func description: OXC
Got operation sequence : 3
Got total_number_of_parameters: 5

The 0 parameter is: SETPATH 
The 1 parameter is: IN1 
The 2 parameter is: OUT3 
The 3 parameter is: 195.2 
The 4 parameter is: 100 

================
The 2 component configuration info
Got component_id: 3
Got func description: EDFA

DC Seg Config (FBD-BAI)

195.2 THz 195.2 THz 195.2 THz195.2 THz
195.3 THz

(1) @TAPI-Orch (2) @TAPI-Orch (3) @DC SDN & BB-X (4) @DC FBD-BAI
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