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Abstract We experimentally demonstrate a traffic prediction assisted network reconfiguration method 

(TPANR) for data center networks based on deep reinforcement learning (DRL). Traffic prediction model 

performs the lowest MSE of 2.64E-4. Exploiting one-step ahead traffic prediction and DRL-based 

automatic network reconfiguration, TPANR achieves 17.3% latency improvement. 

Introduction 

Cloud applications proliferate and increasingly 

differentiate imposing severe requirements to 

current data center networks (DCN) like low 

latency/jitter, high bandwidth, and flexible 

network resource provision. Thus, a real-time 

network reconfiguration is necessary to support 

the dynamic network traffic and satisfy diverse 

quality of service (QoS) of these applications. 

Some heuristic methods like open shortest path 

first (OSPF)[1] were proposed for network traffic 

routing, but these methods usually provide sub-

optimal solutions and may degrade application 

QoS. Recently, we proposed and assessed an 

automatic real-time network reconfiguration 

method (DCR2L) based on deep reinforcement 

learning (DRL)[2], which can explore the optimal 

solution directly from the network without a-priori 

environment model. However, this reactive 

framework can only reconfigure the network after 

monitoring the QoS degradation, resulting in an 

inevitable network performance deterioration. To 

avoid this issue, a proactive framework with a 

traffic prediction model is required to reconfigure 

the network in advance.  

 Several artificial intelligence prediction models 

have been proposed for applications scheduling 

and allocation[3,4]. However, the time-consuming 

iteration processing and requirement of a-priori 

environment models limit the applicability of 

these methods on complex and dynamic DCNs. 

Meanwhile, an adaptive model was developed 

based on machine learning technologies for DCN 

resource utilization prediction[5]. Benefiting from 

the development of deep neural network (DNN), 

many DNN based methods were proposed for 

time-series data prediction, such as recurrent 

neural network (RNN)[6] and gate recurrent unit 

(GRU)[7]. These models can estimate the near-

future traffic as part of proactive reconfiguration 

methods. However, there has not been yet an 

experimental demonstration of DNN-based 

network reconfiguration method and automatic 

operation. 

 In this work, we experimentally demonstrated 

a traffic prediction assisted automatic data center 

network reconfiguration method (TPANR) based 

on DNN and DRL, empowered by a software-

defined networking (SDN) controller. Comparing 

the predicted traffic with the actual traffic, 

experimental results show that the GRU based 

traffic prediction model achieves the lowest mean 

square error (MSE) of 2.64E-4. Exploiting the 

traffic prediction model, the performance of 

TPANR method is experimentally assessed. It is 

demonstrated that the TPANR method achieves 

a network latency improvement of up to 17.3% 

compared with current methods. 

 

Fig. 1: (a) Architecture of the SDN-enabled DCN and (b) Schematic of the TPANR method 



TPANR architecture and operation 

The SDN-enabled DCN architecture comprising 

the data/control plane and TPANR framework is 

depicted in Fig. 1(a). The information about data 

plane layout is stored in the Topology Manager, 

while SDN agents of all the switches send 

network statistics to the RYU controller via the 

Southbound Interface. Note that the leaf-spine 

topology is shown in the data plane, but TPANR 

method is also applicable to other topologies. The 

TPANR framework, consisting of a Traffic 

Prediction Engine (TPE) and a Path Computation 

Engine (PCE), cooperates with Status Manager 

to reconfigure the data plane network. Fig. 1(b) 

shows the schematic of TPANR method. The 

RYU SDN controller periodically sends requests 

to SDN agents for network statistics. Network 

statistics are pre-processed by SDN controller 

and forwarded to PCE of TPANR framework. If 

current network status st violates application QoS 

requirements, PCE is trigged, generates new 

paths of corresponding traffic, and sends the 

results to the SDN controller. Packet lookup 

tables are updated based on new traffic paths 

and distributed to the switches in the data plane 

by Switch Manager. Otherwise, current network 

status is sent to TPE. Combining the stored 

historical traffic, TPE forecasts the near-future 

traffic. According to the predicted status s’t+1, 

PCE reconfigures the data plane network or 

keeps the current configuration.  

 The DNN based model is applied in the TPE. 

Assumed N neuron units in the input layer, at time 

t, the i-th neuron unit represents the historical 

traffic at time t-N+i (i=1, ‧‧‧, N). The neuron unit of 

output layer represents the predicted traffic at 

time t+1. Thus, the target of DNN based model is 

to minimize the error between the model output 

and real traffic at time t+1. To train the DNN 

based model and assess the performance of 

traffic prediction, the MSE is selected as the loss 

function. For the PCE, because the network 

states and reconfiguration actions are continuous 

values, we choose deep deterministic policy 

gradient (DDPG) model. The input layer of actor 

network is network state st, which is defined as st 

= (P, src, dst, U). P is application QoS priority, 

src/dst is the traffic source/ destination address, 

and U is the normalized utilization of link 

bandwidth. The output layer of actor network in 

DRL agent is the action at of traffic allocation, 

defined as a vector at = (w1, ‧‧‧, wm), where wm is 

the traffic ratio allocated to m-th available traffic 

path. The input layer of critic network includes the 

action at and state st, while the output layer is 

estimated Q-value function. The expected Q-

value function is based on the reward Rt: 
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where Lap and Lpp are the normalized average 

end-to-end latency and packet loss of application 

at time t with QoS priority p, while kp
i is weighted 

factors between 0 and 1 (i=1, 2). The target of 

actor network in DRL agent is to maximize the Q-

value function of policy µ(s) based on given state 

st. The target of critic network in the DRL agent is 

to minimize the error between estimated and 

expected Q-value functions based on the MSE. 

The target neural network is applied in the DRL 

agent training, which shares the same structure 

as the main neural network and is updated at a 

slower pace. More details about the DRL agent 

and training can be found in [2]. 

Experimental setup and results 

The experimental setup for assessment of the 

TPANR method is shown in Fig. 2(a). It consists 

of 8 Dell R210 servers grouped in 4 racks and 2 

clusters, and each server comprises one 3400 

series Quad-core Intel Xeon processor, 16GB 

memory, dual 10G Intel NIC for data plane 

connection, and 1G NIC for control plane 

connection. For the network connection, there 

are 4 customized SDN-enabled top of rack (ToR) 

switches based on Broadcom chip and one 128-

port Broadcom BCM956846K-02 electrical switch 

interconnected as a leaf-spine topology. The 

servers use SFP+ multimode fiber transceivers, 

 

Fig. 2: (a) Experimental demonstration setup (b) Statistics CDF of deployed applications 



while ToR and spine switches use 120G CXP and 

40G QSFP transceivers respectively. The 

TensorFlow framework based TPANR method is 

deployed in the RYU controller based control 

plane. The hardware of control plane is equipped 

with 2 12-core Intel Xeon 5118 processors, one 

NVIDIA Quadro 16 GB P5000 GPU, and 128GB 

memory. The SPIRENT Ethernet Testing Center 

is also connected to all the ToR switches to 

measure the network performance. The RYU 

SDN controller sends statistic request every 

second, and three applications are deployed in 

different racks to generate network traffic, 

including media streaming, Hadoop, and cloud 

storage. The statistic cumulative distribution 

function (CDF) of applications (packet length and 

interval time) are depicted in Fig. 2(b). It is shown 

that media streaming has the most packets of 

1500 Bytes, while Hadoop has the most packets 

with an interval time of longer than 100us. 

 The real-time bandwidth of the total network 

traffic in the data plane is illustrated in Fig. 3(a). 

Three different DNN based models (RNN, LSTM, 

and GRU) are applied in the TPE to predict the 

network traffic. The batch size is set to 32 for 

model training, and the learning rate is set as 

0.001. There are two hidden layers in the model, 

while each layer has 30 units. The collected traffic 

is divided into two parts: 85% for training, 15% for 

validation. Trained models are deployed in the 

control plane for testing. The MSE losses of three 

models in the testing under different window 

sizes are shown in Fig. 3(b). The window size is 

defined as the length of historical data used for 

traffic prediction of the coming period. It is shown 

that the window size has a significant impact to 

prediction performance, especially for RNN and 

LSTM. Compared with other two models, GRU 

model achieves the lowest MSE under most of 

window sizes. The best prediction performance, 

the lowest MSE of 2.64E-4, is obtained based on 

the window size of 50 and GRU model with the 

test data. Thus, we use the GRU model in the 

TPE of TPANR method. The predicted traffic in 

the experimental demonstration based on GRU 

model is also shown in Fig. 3(a). It can be 

observed that the predicted traffic keeps in line 

with the real traffic in the data plane. 

 Exploiting the GRU based TPE, the TPANR 

method is also experimentally demonstrated and 

compared with the DCR2L and OSPF methods. 

In the comparison, the DRL agent of TPANR and 

DCR2L methods is configured as two hidden fully 

connected layers (256 units at first and 128 units 

at second hidden layers). The batch size is set to 

20, and the capacity of replay memory is set to 

1600 transitions. During the DRL agent training, 

an episode is set as 20 steps, and the training 

episode is up to 2000. Because the electrical 

switches can buffer all the packets, zero lost 

packet are measured in the experiment. Thus, 

the data plane network latency is set as the 

reward of DRL agent and the performance metric. 

The weighted factor k1
1 =0.5, k2

1= 0.3, k3
1= 0.2, 

then the application of higher QoS priority is 

assigned a higher weight during the network 

reconfiguration. The DCR2L and TPANR 

methods are triggered when the network latency 

increases by 10%. Fig. 3(c) illustrates the 

average network latency of data plane with three 

different methods. It is shown that, compared with 

the DCR2L method, the TPANR method 

achieves a latency improvement of 15.4% when 

network traffic increases, exploiting one-step 

ahead traffic prediction. Meanwhile, compared 

with the classical method OSPF, the TPANR 

method reduces the network latency by 17.3%. 

Conclusions 

We have experimentally demonstrated an 

automatic DRL-based data center network 

reconfiguration method assisted by the traffic 

prediction. With the network traffic generated by 

realistic applications, GRU model performs the 

lowest MSE of 2.64E-4 with the test data. In the 

experiment, the TPANR method achieves a 

latency improvement of up to 17.3% compared 

with current methods. 

 

Fig. 3: (a) Real and predicted bandwidth of the overall traffic (b) MSE comparison under different window sizes (c) Average 
network latency with different methods 
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