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Abstract: We propose a secure aggregation algorithm that allows proprietary-owned domains, hosting 

statistically different datasets, train and operate ML models in a Horizontally Federated Learning fashion. 

The obtained results show a compelling test accuracy of 98.60% for a QoT estimation use-case in multi-

domain multi-vendor networks.

Introduction 

Machine Learning (ML) is expected to play a 

significant role in the transformation towards 

zero-touch autonomous networking [1-2]. On the 

one hand, the success of ML-based solutions 

relies heavily on the quality of the data and its 

inclusive distribution, defined as its 

comprehensiveness to include a wide range of 

data instances to sufficiently model the real 

world. On the other hand, considering the 

published works, one can observe that a large 

number of them rely solely on synthetic data for 

their investigation [3-5], a small number of them 

rely on experimental data collected in the lab or 

field-trials [6-9], while a negligible number of them 

really use real field-collected data [10][11], and yet 

of very limited amount.  

It is agreed that the regulatory issues imposed by 

telecom operators and the reluctance of vendors 

to share their business-critical data, are among 

the top showstoppers to create datasets for 

different networking use cases that are inclusive 

enough to drive the developments of reliable ML 

models. One solution to improve the accuracy of 

ML models for different networks with limited data 

availability is Transfer Learning (TL) [12]. 

However, TL does not secure the ML model from 

attacks that, for instance, aim at gaining access 
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to the actual information [13]. A more promising 

solution is Federated Learning (FL) that enables 

training on sensitive data of multiple data holders 

without sharing the data itself [14]. We recently 

proposed a Distributed Learning Framework 

(DLFi), based on a flavour of FL called Horizontal 

FL (HFL), that allows data owners hosting various 

data instances, each with the same feature set 

(see Fig 1a), to collaboratively train a ML model 
[15][16]. However, the presented Federated 

Averaging (FedAvg) algorithm is yet prone to 

attacks [14].  

Key Contributions 

In this work, we present an advanced ML model 

development approach for DLFi based on Secure 

Multi-Party Computation (SMPC). Our proposal 

allows multiple parties (e.g. an operator, a system 

vendor, or a software provider) to cooperatively 

develop and own a ML model with a privacy-

protection level far beyond what can be achieved 

with FedAvg. Moreover, we propose a novel data 

processing solution, hereafter refered to as 

Secure Statistics Sharing (SSS), for DLFi that 

offers globally optimum data scaling to improve 

the accuracy of the ML models when different 

parties host statistically different datasets. We 

validate our proposals in the development of a 

multi-domain QoT classifier.  

 

Fig 1. a) Domain datasets hosting data instances with the same feature-set, b) multi-domain multi-vendor network, and c) the 
data processing pipeline. Our Data Analytics Toolkit for Optical Networks (DALTON) transforms the Traffic Engineering Database 
(TED) of each domain to use-case specific datasets. The local pipeline provides a locally scaled dataset of each domain to the 
corresponding Edge Contribute Node (ECN) of DLFi. The global pipeline provides a globally scaled dataset of each domain to 
the corresponding ECN based on the Secure Statistics Sharing (SSS) algorithm presented in Algorithm 2.  
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Secure Aggregation and Statistics Sharing 

DLFi exploits data of multiple owners distributed 

over a set of distributed nodes to train a global 

ML model. It comprises two components, 1) Edge 

Contributor Node (ECN) and 2) Training 

Coordinator Node (TCN). In our scenario, each 

ECN is considered as a Virtualized Network 

Function (VNF) with access to the data of a single 

domain. DLFi runs multiple rounds to train a 

model. Each round comprises an eligibility check 

of the ECNs, communicating the config files, and 

the return of the local models to the TCN that 

aggregates the local models [14-15]. 

It is recommended to use Secure Aggregation to 

avoid information leakage from the model 

parameters. Secure Aggregation is referred to 

the problem of computing a multiparty sum where 

no party reveals its update in a clear way, not 

even to the aggregator [17]. To achieve this level 

of privacy, we can take advantage of the SMPC 

protocol [18-19]. SMPC executes secure 

calculations to publish the result only to a single 

instance while guaranteeing that the values of the 

calculation are not known to anyone but the 

contributor itself. The curator only receives the 

resulting combination of all local models but not 

the values of a single local model. Therefore, they 

cannot spy on a single model. In this work we 

employed the SPDZ protocol [20-21], which is a 

secret-sharing-based SMPC method. It takes 

advantage of the additive secret sharing 

algorithm. It is the process of randomly splitting 

up a parameter into multiple shares and send 

them to each corresponding party, in a way that 

the summation of all these shares equals to the 

original value. The original value can be 

reconstructed only when all these shares are 

combined together. Therefore, each individual 

share is of no value by its own. Our proposed 

solution is presented in Algorithm 1. 

Another important challenge for FL algorithms is 

the variations in the distributions of the training 

data on each ECN. This sometimes makes data 

scaling methods less effective as a pre-

processing stage. One solution is to directly send 

the data statistics to the TCN to compute the 

global statistics and further use these statistics 

Algorithm 1: FL with Secure Aggregation using SMPC for a 

list of ECNs 𝜒 = {1, … , 𝑀}. 𝑚𝑜𝑑 is the modulo operator, and 

rand.range means random numbers in a specific range. 𝑙 is 

the loss for the training and ℒ is the average loss over a 

minibatch. 𝑦𝑛 is the ground-truth label used for the training. 

The model is updated with learning rate 𝜂. 

01: send config and initial model 𝜃𝑔
0 to all ECNs 

02: for each round 𝑟 in 𝑅: 
03:   on each ECN 𝑚 in parallel do: 

04:      for each epoch in 𝐸: 

05:         for each minibatch 𝑏 in ℬ:  

06:            compute the model output 𝑦̂𝑛 

07:            loss ℒ(𝜃𝑚
𝑟 ) =  

1

|𝑏|
∑ 𝑙 (𝜃𝑚

𝑟 ; 𝑦̂𝑛, 𝑦𝑛)|𝑏|
𝑛=1  

08:            gradient of loss 𝑔𝑚 =  𝛻𝜃𝑚
ℒ(𝜃𝑚

𝑟 ) 

09:            update model params 𝜃𝑚
𝑟 ← 𝜃𝑚

𝑟 − 𝜂𝑔𝑚   
10:      to secret-share 𝜃𝑚

𝑟  among all ECNs do: 

11:        encode 𝜃𝑚
𝑟 values to fixed precision 

12:        consider 𝑄 as a very large prime number 
13:        for 𝑗 in {1, ⋯ , 𝑀 − 1} do: 

14:          from rand.range(0, 𝑄) create 𝜃𝑚
𝑟,𝑗

 

15:        𝜃𝑚
𝑟,𝑀 = 𝑚𝑜𝑑(𝜃𝑚

𝑟 − ∑ 𝜃𝑚
𝑟,𝑗𝑀−1

𝑗=1 , 𝑄) 

16:      for 𝑗 in 𝜒 do: 

17:        send the shares 𝜃𝑚
𝑟,𝑗

 to ECN 𝑗 
18:   when each ECN 𝑗 receives all shares do: 

19:     𝜃𝑗
𝑟,𝑇 = ∑ 𝜃𝑚

𝑟,𝑗𝑀
𝑚=1  

20:     send 𝜃𝑗
𝑟,𝑇

 to the TCN 

21:   when TCN receives all collective shares do: 

22:     decode all 𝜃𝑚
𝑟,𝑇

to float precision 

23:     𝜃𝑔
𝑟 =

1

𝑀
∑ 𝜃𝑚

𝑟,𝑇𝑀
𝑚=1        

24:     send 𝜃𝑔
𝑟 to each ECN for validation 

25:   on all ECNs in parallel do: 

26:     validate global model 𝜃𝑔
𝑟 on ECN’s data 

27:     compute validation metric (e.g., accuracy) 
28:     secret-share validation metric among ECNs 
29:   when TCN receives validation metric do: 
30:         decide (continue or terminate) training 
31:         if continue: 

32:            send 𝜃𝑔
𝑟 to all ECNs 

33:         else: 

34:            return 𝜃𝑔
𝑟 as the trained model 

Algorithm 2: Secure Statistics Sharing (SSS) algorithm to 
compute the global statistics given the local ones for a list of 

ECNs 𝜒 = {1, … , 𝑀}. 𝑚𝑜𝑑 is the modulo operator, and 

rand.range means random numbers in a specific range. 

01: on each of the ECNs 𝑚 in parallel do: 

02:   compute # training samples (𝑁𝑚) 

03:   𝛴𝑚 =  𝜇𝑚 × 𝑁𝑚 

04:   𝜉𝑚 = 𝜎𝑚
2 × (𝑁𝑚 − 1) + 𝛴𝑚

2 𝑁𝑚⁄  
05:   to secret-share{𝑁𝑚, 𝛴𝑚, 𝜉𝑚} among ECNs do: 

06:     encode {𝛴𝑚, 𝜉𝑚} values to fixed precision 

07:     consider 𝑄 as a very large prime number 
08:     for 𝑗 in {1, ⋯ , 𝑀 − 1} do: 

09:       from rand.range(0, 𝑄) create {𝑁𝑚
𝑗

, 𝛴𝑚
𝑗

, 𝜉𝑚
𝑗

} 

10:     𝑁𝑚
𝑀 = 𝑚𝑜𝑑(𝑁𝑚 − ∑ 𝑁𝑚

𝑗𝑀−1
𝑗=1 , 𝑄) 

11:     𝛴𝑚
𝑀 = 𝑚𝑜𝑑(𝛴𝑚 − ∑ 𝛴𝑚

𝑗𝑀−1
𝑗=1 , 𝑄) 

12:     𝜉𝑚
𝑀 = 𝑚𝑜𝑑(𝜉𝑚 − ∑ 𝜉𝑚

𝑗𝑀−1
𝑗=1 , 𝑄) 

13:   for 𝑘 in 𝜒 do: 

14:     send the shares {𝑁𝑚
𝑘 , 𝛴𝑚

𝑘 , 𝜉𝑚
𝑘 } to ECN 𝑘 

15: when each ECN 𝑚 receives all shares do: 

16:   𝑁𝑚
𝑇 = ∑ 𝑁𝑖

𝑚𝑀
𝑖=1  

17:   𝛴𝑚
𝑇 = ∑ 𝛴𝑖

𝑚𝑀
𝑖=1  

18:   𝜉𝑚
𝑇 = ∑ 𝜉𝑖

𝑚𝑀
𝑖=1  

19:   send {𝑁𝑚
𝑇 , 𝛴𝑚

𝑇 , 𝜉𝑚
𝑇 } to the TCN  

20: when TCN receives all collective shares do: 

21:   𝑁 = ∑ 𝑁𝑖
𝑇𝑀

𝑖=1  (global number of samples) 

22:   𝛴 = ∑ 𝛴𝑖
𝑇𝑀

𝑖=1  

23:   𝜉 = ∑ 𝜉𝑖
𝑇𝑀

𝑖=1  

24:   decode {𝛴𝑚 , 𝜉𝑚} to float precision 

25:   𝜇 = 𝛴 𝑁⁄  (global mean)  

26:   𝜎2 = (𝜉 − 𝛴2 𝑁⁄ ) (𝑁 − 1)⁄  (global variance) 

27:   send global statistics {𝑁, 𝜇, 𝜎2} to all ECNs 



for data pre-processing purposes. However, 

communicating data statistics may compromise 

the privacy of the data owners. In order to 

circumvent this problem, we present an algorithm 

based on SPDZ for sharing the statistics of the 

data such as mean and variance without 

compromising their privacy. This process is 

explained in Algorithm 2. 

Problem Formulation 

We consider a ML-based QoT estimation use 

case in a multi-domain network similar to the one 

conceptionally illustrated in Fig 1b to demonstrate 

the performance of the proposed SMPC and SSS 

algorithms. We aim to use the domain-specific 

data of each Domain Manager (DM) to 

collaboratively train a ML model while keeping 

the data on the corresponding DMs. We further 

define two scenarios in which DMs operate over 

1) topologically different domains with statistically 

similar traffic patterns, and 2) topologically 

different domains with statistically different traffic 

patterns.  

We use the publicly available QoT estimation 

datasets 01, 02, and 04 [22][23]. For obtaining 

domain-specific datasets from the dataset, we 

define three domains A, B, and C within the 

topology of CORONET CONUS (depicted in 

Fig.2b of [15]). As presented in Table 1, we build 

scenario 1 based on dataset 01, which offers 

similar traffic patterns across domains .We build 

scenario 2 by forming the dataset of each domain 

using the datasets 01, 02, and 04, which offer 

different traffic patterns, for domain A, B, and C, 

respectively. We process the obtained datasets 

to be class-balanced (check Table 1).  The 

statistical distribution of domain B is significantly 

different than the ones of A and C. To reveal the 

statistical differences of different domains in both 

scenarios, we visualize the domain-wise 

distribution of path length, as a very informative 

feature in the dataset, and the domain-wise 

class-wise distribution of Optical Signal to Noise 

Ratio (OSNR), respectively, in Fig 2 and Fig 3. 

The variation of the statistical distribution of the 

domains is more significant for class 0 samples. 

Results and Concluding Remarks 

We split the domain-wise datasets in train, 

validation, and test sets, with 70%, 20%, and 

10% share, respectively. We define three 

scenarios for our evalution: 1) FedAvg and 2) 

SMPC with local data scaling, as well as 3) 

SMPC with global data scaling using SSS. We 

consider Centralized Learning (CL) as the 

baseline, which is the case where we combine 

the data of the three domains and perform the 

training in a centralzied way. In all the scenarios, 

we consider a feed-forward neural network with 

an input dimension of 16 and a single hidden 

layer of size 256. We use tanh as the activation 

function for the hidden layer and a binary cross-

entropy for the loss function. We report the 

results in terms of accuracy in Table 2.  

Our SMPC algorithm shows competetive 

performance compared to the FedAvg when they 

use only local data scaling. However, both suffer 

~7% and ~11% inaccuracy compared to CL, in 

scenario 1 and scenario 2, respectively. With the 

incorporation of our proposed SSS algorithm that 

allows global data scaling in a secure way, the 

accuracy of our SMPC algorithm gets very close 

to the CL baseline, with less than 0.5% 

performance degradation for both scenarios. The 

results showcase that our secure aggregation  

and SSS algorithms enable collaborative ML 

model training over statistically different datasets 

owned by multiple parties without revealing any 

raw data or statistics of their datasets. 

The reported achievements pave the way for the 

realization of shared governance and ownership 

of ML models in multi-party telecom ecosystems. 

Acknowledgement: This work received funding 

from BMBF in AI-NET PROTECT (KIS8CEL010).  

Table 1. The number of training samples used for each 
scenario and domain is provided in square brackets. 

 Domain A Domain B Domain C 

Scenario 1 01-A [29581] 01-B [30869] 01-C [21908] 

Scenario 2 01-A [3987] 02-B [3653] 04-C [4321] 

Table 2. The identified options for each scenario based on 
FedAvg and SMPC algorithms as well as the proposed data 
scaling solutions. CL is reported as baseline. 

 Options Training  Validation Test 

S
c
e

n
a

ri
o

 

1
 

FedAvg – Local 91.46 % 90.78 % 91.11 % 

SMPC – Local 91.55 % 91.67 % 91.32 % 

SMPC – Global 98.01 % 97.99 % 97.91 % 

CL 98.37 % 98.40 % 98.16 % 

S
c
e

n
a

ri
o

 

2
 

FedAvg – Local 86.82 % 87.39 % 87.26 % 

SMPC – Local 86.79 % 87.34 % 87.03 % 

SMPC – Global 98.71 % 98.36 % 98.60 % 

CL 98.87 % 98.57 % 98.60 % 

 

 

 
Fig 2. Domain-wise path length distribution.  

 
Fig 3. Domain-wise and class-wise OSNR distribution. 
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