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Abstract We show that the combination of machine learning methods and analytical expressions can 

enhance the OSNIR estimation of an optical link of up to 2 dB compared with the use of an analytical 

expression alone. For this purpose, we exploit seven machine learning algorithms and we examine their 

OSNIR improvement for 3,000 different operational cases.

Introduction 

The operation of elastic optical networks 

(EONs) is feasible only via an accurate but, yet, 

timely knowledge of the physical layer 

performance across all EON paths. In this 

respect, a) the Split Step Fourier Method (SSFM) 

is a very accurate method but it does not return 

timely results for the overall EON status; b) 

closed-form solutions can be integrated to EON 

planning tools and they return results in a useful 

timescale but mathematical approximations are 

used[1]; c) experimental measurements are by far 

the most accurate method but they only provide 

a snapshot of the network status under the given 

conditions at a time. 

These restrictions lead to a sub-optimal use of 

the network capacity while the potential of the 

EON resources is not fully explored including the 

introduction of operational margins[1],[2]. This 

underutilisation is evident in[1], that prevents an 

EON to operate at higher modulation formats 

and/or line-rates limiting its capacity potential. 

So far, Machine Learning (ML) techniques have 

been used to overcome these remedies[2]-[7].  

However, performance estimators relying 

exclusively on ML techniques may return 

erroneous results as they are based on the (a) 

and (c) methods above that only feed the 

algorithms with performance snapshots.  

In prior art, analytical methods in association to 

ML techniques were reported considering a 

single ML algorithm[6],[7]. In this work, we propose 

an estimator that merges a) the performance 

estimation based on closed-form expressions for 

the signal to noise plus interference ratio 

(OSNIR)[8] and b) ML algorithms. The approach 

we follow is to benchmark against the results 

obtained from the SSFM method with i) the 

results obtained solely from closed-form 

solutions; ii) those obtained solely when ML 

algorithms are used and iii) the combination of 

closed-form and ML techniques. This will allow to 

examine the efficiency and limitations of each 

method. 

In particular, in the alternative (iii), the ML 

component is engaged only in cases where 

analytical expressions are inaccurate, e.g. when 

the accumulated dispersion is low[9], avoiding an 

averaging between closed-form expressions and 

ML methods, as this averaging may lead to great 

discrepancies that ML method cannot tackle.  

To carry out the benchmarking, seven well-

known ML algorithms were considered to avoid 

algorithm-dependent conclusions. Moreover, we 

were not limited to investigate algorithms only for 

neural networks like in[5]-[7]. The selected 

algorithms were trained using the results from 

3,000 different operational scenarios obtained 

from the SSFM method[10]. For the training of the 

algorithms, the combined effect of amplified 

spontaneous emission (ASE) noise and fiber 

nonlinearity was taken into account, not only 

nonlinearity as in[6],[7]. 

 

System under investigation 

The system under study is illustrated in Fig.1 

and consists of Ns spans of SMF and EDFA in 

tandem. The employed modulation format is PM-

QPSK and all the channels are rectangularly-

shaped. Using this system, we estimate OSNIR 

for 3,000 representative combinations of the 

parameters tabulated in Table 1. The simulated 

symbols in each case were 

8192/channel/polarization. Ideal optical and 

electrical filters and mux/demux with zero losses 

are considered. We also ignored the impact of 

Polarization Mode Dispersion and laser linewidth 

 
Fig. 1: Examined system. 
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in order to ensure that the dominant effects that 

degrade system performance are ASE noise and 

fiber nonlinearity. Other fiber parameters are � = 

17 ps/(nm∙km), � = 1.317 W−1∙km−1, � = 0.2 

dB/km. The amplifier noise figure was set to 6 dB. 

 

Proposed formalism 

The proposed formalism is illustrated in Fig.2. It 

incorporates the closed-form expression of[8] and 

seven well-known ML algorithms used for 

regression purposes, namely Multiple Linear 

Regression (LR), Multivariate Polynomial 

Regression (PR), Decision Tree (DT), Random 

Forest (RF), Support Vector Regression (SVR), 

k-Nearest Neighbors (k-NN) and Deep Neural 

Network (DNN). These algorithms were selected 

as the most appropriate for our problem as they 

provide high modelling accuracy with reasonable 

computational time.  

Each ML method was trained using the 3,000 

combinations of different input-output parameters 

which were derived using the SSFM. In particular, 

the parameters of Tab.1 were used as the input 

and the estimated OSNIR using SSFM was used 

as the output. The training was performed as 

follows. First, all 3,000 input-output pairs were 

shuffled and divided into five datasets, where 

each dataset contained 1,800 values for training, 

600 for validation and 600 for testing. Next, a 

circular cross-validation rotation between the 

training, validation and test sub-sets was 

performed to ensure that all 3,000 values were 

tested. After that, the ML algorithms were trained 

whilst the selection of the optimum 

hyperparameters for each ML method was 

performed by applying grid search on the 

validation set. The optimum hyperparameters for 

each method are shown in Tab.2. Finally, the 

trained algorithms were applied on the test set 

and the predicted OSNIR values were compared 

against the ones computed with SSFM for each 

of the 3,000 different operational cases in order 

to calculate the accuracy for each ML algorithm. 

In the DNN, we considered the use of ReLU[11] as 

the activation function and Adam[12] as the 

optimizer. The maximum number of epochs was 

set to 500 and the training stopped if the loss in 

the validation set did not improve after 50 epochs.  

From Fig.2, we can observe that, based on the 

operational parameters, either the closed-form 

expression routine or the ML routine is activated. 

In particular, the ML routine is enabled in cases 

where the closed-form expressions are 

erroneous e.g. in links smaller than 200 km, 

where the accumulated dispersion is low and the 

Gaussian Noise assumption is not valid[9]. In all 

other cases, the closed-form expression routine 

is activated.  

The proposed formalism is independent of the 

analytical expressions and ML methods used to 

calculate OSNIR and can incorporate any 

analytical expression and any additional ML 

algorithm. Further, the accuracy of the ML 

methods can be gradually improved over time by 

feeding them with additional pairs of input-output 

parameters derived from the SSFM.  

The combined solution can be also trained with 

real data. In this case, the proposed method can 

reproduce the real transmission channel 

accounting for additional effects, omitted by the 

theoretical methods. Finally, the candidate 

 

Fig. 2: The proposed method which combines machine learning and closed-form expressions for physical layer 
performance estimation, L: span length, Ns: number of fiber spans.  

 

Table 1: System parameters used in our study 

Parameter Symbol Value 

Number of fiber spans Ns 1-50 

Span length L 5, 10, 50, 100 km 

Channel bandwidth B 12.5, 25, 50 GHz 

Guard band GB 0, 12.5, 25 GHz 

Number of channels Nch 3, 9,15 

Channel Power Pch -10 to +3 dBm 
 

Table 2: Optimal hyperparameters for each ML method 

Method Optimal Hyperparameter 

Linear Regression 1st order polynomial 

Multivariate Polynomial 
Regression 

2nd order polynomial 

Decision Tree depth = 10 

Random Forest 
depth = 10, number of 

estimators = 10 

Support Vector Regression C = 15, γ = 0.0011 

k-Nearest Neighbors k = 15, weights = distance 

Deep Neural Network 
hidden layers = 2, 
neurons/layer = 32 

 



solution can serve as an integral part of a 

Physical Layer Aware, Routing, Modulation and 

Spectral Assignment algorithm such as[1], due to 

the very low computational time. 

 

Results 

The accuracy of the closed-form expression 

and the trained ML algorithms is illustrated in 

Fig.3. In this figure, we show for each algorithm 

the occurence of the following quantity for all 

3,000 cases:  

 

[ ] [ ] [ ]numerical estimated
Mism dB OSNIR dB OSNIR dB= −

 

(1) 

 

where OSNIRnumerical denotes the OSNIR 

computed using SSFM and OSNIRestimated 

represents the OSNIR calculated with the closed-

from and the ML methods.  

Evidenty, the DNN (Fig.3h) outperforms all 

other ML methods showing the lowest mismatch. 

This effectiveness can be attributed to its 

complex structure, which allows it to learn more 

complex patterns between the input parameters 

(e.g. power, number of channels) and the output 

quantity (OSNIR). Next, RF (Fig.3e) shows a 

comparable performance with the closed-form 

expression of[8], while it outperforms DT (Fig.3d). 

This is expected, since it combines the results of 

multiple decision trees, in order to improve the 

overall accuracy, instead of only one which is 

included in DT. SVR (Fig.3f) and k-NN (Fig.3g) 

provide similar performance, however, lower than 

the DNN and the closed-form formalism. Further, 

linear regression (Fig.3b) shows the highest 

mismatch as it fails to capture the relation 

between the input and output quantities, which is 

clearly not linear due to the existence of fiber 

nonlinearity. Finally, the polynomial regression of 

second order (Fig.3c) shows a significantly lower 

mismatch when contrasted with linear 

regression, however, it is outperformed by all 

other methods. This happens because, in this 

case, as well, the dependence of OSNIR on all 

input system parameters is not polynomial.  

Next, we select the most accurate ML method, 

which is DNN and combine it with the closed-form 

OSNIR expression, following the methodology 

presented in Fig.2. This synthesis, which is 

shown in Fig.3i, improves the overall accuracy 

significantly, as the absolute mismatch is less 

than 2, 1 and 0.5 dB in 99.53%, 95.27% and 

73.29% of the examined cases, respectively. This 

improvement is apparent when compared with 

solely the closed-form expression, which shows 

an absolute mismatch of 2, 1 and 0.5 dB in 

97.70%, 88.80% and 65.69% of the 3,000 cases, 

respectively. Moreover, the number of cases 

where the absolute error is higher than 2 dB has 

decreased from 2.30% down to less than 0.5%. 

Further, the maximum mismatch has downscaled 

from 5.21 dB to 3.11 dB, which is an important 

conclusion, as it clearly indicates the feasibility of 

ML methods on improving the OSNIR estimation.  

 

Conclusions 

We examined the potential of seven well known 

ML algorithms on improving the OSNIR 

estimations. The combined method which 

exploited a closed-form expression and DNN was 

compared against SSFM and reduced the 

maximum mismatch of about 2 dB, while it also 

decreased the cases where the absolute error 

was higher than 2 dB from 2.30% to 0.47%.  

 

 

Fig. 3: Histograms of the mismatch in [dB] for all the 3,000 tested values using the closed-form expression of[8] and seven 
machine learning algorithms. The mismatch is calculated with respect to the SSFM. 
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