
Experimental Evaluation of 5G vRAN Function Implementation

in an Accelerated Edge Cloud

J.C. Borromeo(1), K. Kondepu(2), N. Andriolli(3), L. Valcarenghi(1)

(1) Scuola Superiore Sant’Anna,via G. Moruzzi 1,56124,Pisa,Italy, justinecris.borromeo@santannapisa.it
(2) Indian Institute of Technology Dharwad, Dharwad, Karnataka, India, 580011
(3) National Research Council of Italy (CNR-IEIIT), via Caruso 16, 56122, Pisa, Italy

Abstract Disaggregated next generation eNodeB (gNB) largely benefits from offloading selected virtu-

alized Distributed Unit (vDU) functions into a field programmable gate array (FPGA). Results show that

the FPGA-based IFFT and cyclic-prefix addition processing time is faster than dual-core high-end CPU

on longer OFDM symbol size with lower power consumption.

Introduction

In an integrated fronthaul/backhaul network in-

frastructure, network function virtualization of-

fers quick and affordable deployment, upgrade,

and scaling of network services and functions[1].

Thus, 5G and beyond networks are expected to

be based on virtualized functions as well and, re-

cently, solutions for a cloud/virtualized Radio Ac-

cess Network (vRAN) are emerging[2].

In vRAN, the next generation eNodeB (gNB) is

disaggregated in Radio Unit (RU), Distributed Unit

(DU), and Central Unit (CU)[3]. Generally, the RU

is not virtualized because it performs radio fre-

quency (RF) related functions, such as up/down

conversion, filtering, and digital to analog conver-

sion. The DU and the CU, which can be virtual-

ized, are deployed close to the the antenna and

in centralized locations, respectively. The RU and

DU are connected by the fronthaul and the DU

and the CU are connected by the midhaul[4].

Different functional splits are proposed that dis-

tribute the several functions between the DU and

the CU, resulting in different delay, jitter, and ca-

pacity requirements[4]. In some cases, although

optical fiber connections can support the required

capacity, latency requirements are so strict (e.g.,

hundreds of µs for split option 7) that current vir-

tualization techniques, such as virtual machines

or containers, can hardly satisfy them[5].

Accelerated edge cloud micro data centers[6]

feature the integration and interconnection of

Central Processing Unit (CPU), Graphical Pro-

cessing Unit (GPU), Field Programmable Gate

Array (FPGA), and the recently proposed Data

Processing Unit (DPU)[7]. Thus, accelerated edge

cloud micro data centers will play an important

978-1-6654-3868-1/21/$31.00 ©2021 IEEE

role in the 5G and beyond fronthaul/backhaul net-

work infrastructure bringing several advantages,

such as latency and power consumption reduc-

tion[8]. Such advantages are beneficial not only to

end-user application/verticals, but also to the inte-

grated fronthaul/backhaul network infrastructure.

This paper implements and experimentally

evaluates the performance of offloading some

vDU functions onto an FPGA. Specifically, the of-

floaded functions are the (Inverse) Fast Fourier

Transform (IFFT/FFT) and the Cyclic Prefix (CP)

addition/removal in Orthogonal Frequency Divi-

sion Multiplexing (OFDM) signals. FPGAs can be

a very good accelerator for these functions since

they offer almost deterministic latency and high

processing capacity per Watt.

5G Fronthaul/Midhaul Scenario and Imple-

mentation

gNB-CU

gNB-DU

RUs

PDCP

RLC

MAC

High-PHY

Low- PHY

RF

Option 2

Midhaul

Fronthaul

To Mobile Core

10 Gbps PCIe

10 Gbps

10/25 Gbps

Accelerated 

Edge Cloud

Fig. 1: 5G architecture with Option 2 split

Fig. 1 shows the considered 5G fronthaul/mid-

haul scenario, where gNB split option 2 is imple-

mented. In the 5G vRAN segment, the RU with

RF functions are implemented in a Universal Soft-

ware Radio Peripheral (USRP). The RU is con-

nected to the DU through a 10 Gb/s optical Eth-

ernet fronthaul. The DU is virtualized and imple-

ments functions from Low-PHY up to Radio Link

Control (RLC) of the mobile protocol stack. The



Low-PHY layer functions, such as IFFT/FFT and

CP addition/removal, are offloaded onto a pro-

grammable hardware (i.e., FPGA), as shown in

Fig. 1. The High-PHY layer up to the RLC layer

functions are executed in the gNB-DU CPU. The

FPGA and the CPU are interconnected through

the Peripheral Component Interconnect express

(PCIe) interface. The Packet Data Convergence

Protocol (PDCP) functions are implemented in

the gNB-CU, which can be deployed in an accel-

erated edge cloud data center.

IFFT
Cyclic Prefix 

Insertion

FFT
Cyclic Prefix 

Removal

IQ Samples 

(Frequency)

IQ Samples 

(Frequency)

IQ Samples (Time) 

with CP

IQ Samples (Time) 

with CP

Downlink

Uplink

Fig. 2: Low-PHY layer implementation in FPGA

The Low-PHY layer function implementation

is based on the Open Computing Language

(OpenCL)[9]. The OpenCL is a parallel computing

API that provides flexibility to run a single program

in multiple platforms (e.g., FPGA, GPU, CPU, and

DPU). Thus, it is suitable for the implementation

of the considered vDU, where some functions are

implemented in the FPGA and others are imple-

mented in the CPU. Fig. 2 shows the details of

the Low-PHY implementation in the FPGA. The

considered FPGA hardware is a DE10-Pro Tera-

sic FPGA board equipped with Stratix 10 GX Intel

FPGA with 2 banks of DDR4 memory.

Performance Evaluation Results
In the first set of experiments the following per-

formance parameters are considered: the IFFT

and CP addition processing time, defined as the

time required to compute IFFT and CP addition,

the FPGA logic utilization, defined as the number

of utilized logic elements, the utilized Digital Sig-

nal Processing (DSP) blocks, memory bits, RAM

blocks, and kernel frequency.

Five different versions of the Low-PHY imple-

mentation are compared that exploit different op-

timization techniques available in the considered

Intel FPGA SDK for OpenCL: (i) version (V1) fea-

tures the implementation of IFFT and CP addition

without any optimization; (ii) version (V2) uses

the loop unrolling method (i.e., the system exe-

cutes each loop in a parallel manner to speedup

the computation by “N” times by using a pragma

unroll (N) command); (iii) version (V3) removes

function calls inside the main kernel code (i.e.,

it avoids creating a different circuit for a specific

0

10

20

30

40

128 256 512 1024 2048

P
ro

c
e
s
in

g
 T

im
e
 [
µ

s
]

OFDM Symbol Size

FPGA 1 CPU Core

2 CPU Cores 3 CPU Cores

4 CPU Cores

Fig. 3: FPGA vs CPU processing time

function resulting into a lower resource utiliza-

tion); (iv) version (V4) implements a matrix in-

stead of a vector representation of the array to

increase the kernel frequency, thus reducing the

computation time; (v) and version (V5), as V4

but with the kernel code compiled by using Intel

FPGA SDK for OpenCL version 20.3 instead of

the older 19.1 (used also for V1, V2, and V3).

Table 1 shows the implementation of Low-PHY

function with an OFDM symbol size of 128 con-

sidering the aforementioned optimization tech-

niques. The processing time decreases from

34.5µs to 23.5µs when the loop is fully unrolled

(i.e., V2) with the trade-off of an increased logic

utilization, DSP blocks, and RAM blocks. When

function calling is avoided in the implementation

(i.e., V3), there is a slight decrease in the logic

element utilization. By exploiting a matrix rep-

resentation of the array of components (i.e., V4)

the processing time and the logic utilization are

further decreased and the kernel frequency is in-

creased by a factor of 1.7. The most optimized

version (i.e., V5) shows a processing time of

15.43µs.

Considering the most optimized implementa-

tion (i.e., V5), its hardware performance as a

function of the OFDM symbol size from 128 to

2048 is also evaluated and reported in Table 1.

Since the design needs more FPGA resources

with increasing OFDM symbols, the table shows

that the logic utilization, DSP blocks, memory bits,

and RAM blocks increase as well. Also the kernel

frequency decreases with increasing IFFT points

due to increasing IFFT complexity, which is given

by O(NlogN) with N as the number of OFDM

symbols.

Fig. 3 compares the processing time as a func-

tion of the OFDM symbol size of a CPU-based

and an FPGA-based Low-PHY implementation.

For the CPU-based implementation, an Intel i7-

7700K CPU@4.20GHz system with four cores

is considered. The CPU-based implementation

processing time decreases as a function of the

utilized CPU cores. Moreover, the processing



Tab. 1: OpenCL Optimization Result Of Different OFDM symbol sizes.

128

V1 V2 V3 V4 V5 256 512 1024 2048

Processing 34.37 23.5 23.45 21.4 15.43
Time (µs)

Logic Utilization 14% 25% 21% 19% 21% 26% 36% 51% 66%
DSP Blocks < 1% 5% 4% 3% 3% 3% 8% 14% 14%
Memory Bits 2% 2% 2% 3% 5% 6% 11% 15% 15%
RAM Blocks 4% 6% 6% 7% 11% 13% 16% 23% 23%

Kernel 239.23 366.7 285.63 484.26 484.78 461.68 390.93 299.67 146.26
Frequency(MHz)

0

5

10

15

20

25

128 256 512 1024 2048

P
o
w

e
r 

C
o
n
s
u
m

p
ti
o
n
 [
W

] 

OFDM Symbol Size

FPGA 1 CPU Core

Fig. 4: FPGA vs CPU power consumption

time of both the CPU-based and the FPGA-based

implementations increases as a function of the

OFDM symbol size. However, the slope of the

increase experienced by the FPGA-based imple-

mentation (≈ 1µs if the OFDM symbol size dou-

bles) is much lower than the one experienced by

the single CPU core implementation. At 2048

OFDM symbol size, the FPGA-based implemen-

tation has a shorter processing time compared to

single and dual core CPU.

Fig. 4 compares the performance in terms of in-

stantaneous power consumption during the IFFT

computation and CP addition. The power con-

sumption increases as a function of the consid-

ered OFDM symbol size, but the FPGA power

consumption is always lower than the single core

CPU one.

Conclusions
This paper presented how the performance of

virtualized Distributed Unit (vDU) Low-PHY func-

tions can benefit from their offloading onto an

FPGA. The results showed that an optimized

IFFT/FFT and Cyclic-prefix addition/removal im-

plementation not only outperforms a dual CPU im-

plementation in terms of processing time for large

OFDM symbol size, but it requires also less in-

stantaneous power.

Acknowledgements
This work received funding from the ECSEL JU

grant agreement No 876967. The JU receives

support from the EU Horizon 2020 research and

innovation programme and the Italian Ministry of

Education, University, and Research (MIUR). We

would like to thank “Intel University Program and

Terasic Inc” for donating the FPGA hardware.

References
[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck,

and R. Boutaba, “Network Function Virtualization: State-

of-the-Art and Research Challenges”, IEEE Communi-

cations Surveys Tutorials, vol. 18, no. 1, pp. 236–262,

[2] T. Murakami, Y. Kishi, K. Ishibashi, K. Kasai, H. Shinbo,

M. Tamai, K. Tsuda, M. Nakazawa, Y. Tsukamoto, H.

Yokoyama, Y. Fujii, Y. Seki, S. Nanba, T. Hara, F. Adachi,

and T. Sotoyama, “Research project to realize various

high-reliability communications in advanced 5g network”,

in 2020 IEEE Wireless Communications and Network-

ing Conference (WCNC), 2020, pp. 1–8. DOI: 10.1109/

WCNC45663.2020.9120477.

[3] L. M. P. Larsen, A. Checko, and H. Christiansen, “A

Survey of the Functional Splits Proposed for 5G Mobile

Crosshaul Networks”, in IEEE Communications Survey

and Tutorials, 2019.

[4] ITU-T, “Transport network support of IMT-2020/5G”,

GSTR-TN5G, Feb. 2018, Version 1.0.

[5] F. Giannone, K. Kondepu, H. Gupta, F. Civerchia, P. Cas-

toldi, A. Franklin, and L. Valcarenghi, “Impact of Virtuali-

sation Technologies on Virtualised RAN Midhaul Latency

Budget: A Quantitative Experimental Evaluation”, IEEE

Communications Letters, 2019.

[6] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Poten-

tials, trends, and prospects in edge technologies: Fog,

cloudlet, mobile edge, and micro data centers”, Com-

puter Networks, vol. 130, pp. 94–120, 2018, ISSN: 1389-

1286. DOI: https://doi.org/10.1016/j.comnet.

2017.10.002.

[7] https://www.nvidia.com/en-us/networking/products/data-

processing-unit/, last accessed Jun. 1st, 2021.

[8] ETSI GS NVF-IFA 001, Network Functions Virtualization;

Acceleration Technologies; Report on Acceleration Tech-

nologies and Used Cases, v1.1.1, Dec. 2015.

[9] A. Munshi, B. R. Gaster, T. G. Mattson, J. Fung, and

D. Ginsburg, OpenCL: Programming Guide. Addison-

Wesley, July 2011.


