
Mask RSA: End-To-End Reinforcement Learning-based Routing
and Spectrum Assignment in Elastic Optical Networks

Masayuki Shimoda(1), Takafumi Tanaka(1)

(1) Network Innovation Laboratories, Nippon Telegraph and Telephone Corporation, Yokosuka, Japan,
masayuki.shimoda.wp@hco.ntt.co.jp

Abstract We propose Mask RSA, an end-to-end deep reinforcement learning-based routing and spec-
trum assignment for elastic optical networks. Mask RSA masks unassignable choices, and decides
routing and spectrum assignment concurrently for higher performance. Mask RSA outperforms KSP-FF
under various traffic loads in small and large networks.

Introduction
Dynamic routing and spectrum assignment (RSA)
using deep reinforcement learning (DRL)[1] has
been reported to be promising for dynamic net-
work operations. Previous studies fall into
two categories: DRL-based routing and DRL-
based spectrum assignment (SA). For DRL-
based routing, DeepRMSA[2] selects one of K-
shortest path (KSP) based on artificial features;
it outperforms a heuristic algorithm. Regard-
ing DRL-based SA, the massive number of fre-
quency slot (FS) candidates in elastic optical net-
works (EONs)[3] is a significant problems in train-
ing. R.Shiraki et al. introduced the semi-flexible
grid network to reduce the number of FS candi-
dates, allowing a high performance SA algorithm
to be trained successfully.[4]

The above studies conduct routing and SA sep-
arately, so any resulting algorithm would be sub-
optimal. Our research motivation is combining
DRL-based routing and DRL-based SA for higher
performance. The key difficulty is that the number
of assignable FS candidates varies time to time,
and even among KSP due to modulation level.
Previous work[4] calculates value of every can-
didate (including assignable and unassignable
ones) one-by-one, and selects the best value can-
didate. If the previous work is simply extended, it
incurs high computation costs since inference of
the deep neural network (DNN)[5] runs (#FS −
#ReqSlot+1)×K times. When an algorithm se-
lects one in the fixed number of assignable candi-
dates[2], its decision would be sub-optimal since
all assignable ones are not evaluated. Thus,
for higher performance, any combination of DRL-
based routing and SA must handle the changing
number of assignable candidates.
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Fig. 1: Overview of Mask RSA inference with K = 2. Based
on utilization of whole FSs and mask, Mask RSA decides

path and FSs concurrently.

In this paper, we proposes Mask RSA, an end-
to-end DRL-based RSA that solves routing and
SA concurrently. To handle the dynamic changes
in the number of assignable candidates, we intro-
duce a mask that extracts assignable candidates
to simplify candidate selection. Also, the con-
current inference step is run just once, not mul-
tiple times, thus reducing computation cost signif-
icantly with high performance. This paper is the
first to detail of an end-to-end DRL-based RSA
that outperforms KSP-FF.

The explanation of Mask RSA is roughly di-
vided into three sections: problem formulation, in-
ference, and training.

Mask RSA: Problem Formulation
RSA is mapped to discrete Action space A. Mask
RSA implements routing by selecting one of the
KSP, and SA is done by selecting the first index
of used FSs. Thus, Action space in Mask RSA is
defined as A = {1, 2, ..., S×K,S×K+1}, where
S and K are the numbers of FSs and paths, re-
spectively. The option of Action is Do Nothing; if
assignable resources do not exist in KSP, take the
Action of Doing Nothing, which leads to blocking.
For example, when selected Action no. is 120, (1)
do-nothing if 120 > S × K, or otherwise (2) the



selected path is b120/Sc and start index of used
FSs is 120 mod S. This formulation makes Agent
to select a routing path and FSs concurrently.

Mask RSA: Inference
Fig. 1 overviews Mask RSA inference that fea-
tures the concurrent decision of RSA. Key ele-
ments are (1) feature vector for convolution, (2)
RSA assignable mask, and (3) Action selection.

(1) Feature vectors: A feature vector is a vec-
tor of characteristics of the current state that an
Agent uses as a reference when deciding on an
Action. Past studies employ partial features, i.e.,
features of selected routes instead of whole net-
work features and artificial features such as the
number of available FSs in routing path. Since
the states of the whole network would be more
helpful in improving performance, Mask RSA sets
the Action-decision function to use both entire
FS utilization tensor and convolutional neural net-
work (CNN). Let SU ∈ {0, 1}L×S be the slot uti-
lization matrix (0 indicates occupied, and 1 indi-
cates available); SUl,s indicates slot status of the
l-th link at the s-th slot. Feature vectors are made
by concatenating the slot utilization status vec-
tor
−→
SV l = [SUl,0, ..., SUl,S ] ∈ {0, 1}S of all links;

feature vector ∈ {0, 1}L×1×S . This data struc-
ture makes it easy to extract features of slot uti-
lization of the whole network by convolution.

(2) RSA Assignable Mask (RSA2M): To
deal with dynamic changes of the number of
assignable candidates, the masking approach is
employed. First, for each routing path, assignable
boundary slot mask (ABSM) is generated as a
vector whose assignable position at a bound-
ary is 1; otherwise 0. ABSM can avoid spec-
tral fragmentation since it considers only bound-
aries. Next, Do Nothing mask is created; 0
when assignable candidates exist among KSP,
otherwise 1. Finally, both K ABSMs and Do
Nothing mask are concatenated, to generate
RSA assignable mask (RSA2M)

−−−−−→
RSA2M ∈

{0, 1}S·K+1.
(3) Action Selection: Let softmax(·) and

argmax(·) be softmax and argmax functions, re-
spectively. Mapping function from CNN output to
Action is written as

Action = argmax(softmax(
−→
out ◦

−−−−−→
RSA2M)),

where −→out is a CNN output vector, and ◦ is
Hadamard product. This mask avoids the exami-
nation of unassignable choices.
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Fig. 2: Fragmentation metric.

Mask RSA: Training

Key elements of the training mechanism in
Mask RSA are (1) exploration among assignable
choices and (2) multi-metric reward function.

(1) Exploration Storategy: Balancing explo-
ration against exploitation is one of the impor-
tant issues in achieving high performance. Mask
RSA employs Boltzmann exploration, which se-
lects Actions based on a probability from a Boltz-
mann distribution. Action selection is performed
after RSA2M, which means that exploration runs
among only assignable choices. Related work[4]

forces RL to learn not only whether slots are
assignable, but also which assignable one has the
best efficiency. However, we consider that deter-
mining whether slots are assignable can be cal-
culated easily, making the use of RL for this un-
necessary.

(2) Reward Function: To provide useful infor-
mation for training efficient RSA algorithms, Mask
RSA uses a reward function with dual metrics:
fragmentation metric and utilization metric.

R =

{
Rfrag +Rutil if assignable

−1 otherwise,

The fragmentation metric combines spatial
fragmentation and spectral fragmentation as
shown in Fig. 2. Let

−−−→
LSV s = [SU0,s, ..., SUL,s] ∈

{0, 1}L be a vector at the s-th slot. Fragmentation
metric is defined as follows:

Fragmentation(−→v ) =

∑
i sqrt(AS2

i )∑
i ASi

,

Fspatial(s) = Fragmentation(
−−−→
LSV s),

Fspectral(l) = Fragmentation(
−→
SV l),

where sqrt(·) is the square root function, and
ASi is the i-th number of adjacent-available-
blocks. From these metrics, fragmentation reward
function is defined as follows:
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Fig. 3: BPs during training in NSF.
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Fig. 4: BPs during training in JPN48.

Rfrag =

∑S
s Fspatial(s)

S
+

∑
Pi

2 · Fspectral(Pi)− 1

P
,

where P is the number of links in the selected
routes, and Pi is the i-th link No. of the selected
routes.

To create an efficient routing algorithm, training
uses the following utilization metric:

Rutil =

∑L
l

∑S
s SUl,s

L× S
.

After every Action is conducted, our reward
function evaluates the status of FS in detail.

Simulation Settings
We conducted two experiments for evaluating the
blocking probability (BP) performance of Mask
RSA by comparing it with the heuristic algorithm,
KSP first-fit (KSP-FF). The first experiment ex-
amined training, and the second one challenged
trained Agent to various traffic loads. Simula-
tions involved a dynamic traffic scenario, where
requests were generated based on a Poisson pro-
cess following a uniform traffic distribution. For
the first experiment, the average arrival rate and
service duration were 10 and 12, respectively.
The requested slot width was 1-4 slots, and the
transmission reaches of BPSK, QPSK, 8-QAM,
and 16-QAM signals were determined based on
published experiments[6]. RSA-RL framework[7]

was used for establishing the simulation environ-
ment. Tested networks were NSF Network (14
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Fig. 5: BPs versus various traffic loads in NSF.
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Fig. 6: BPs versus various traffic loads in JPN48.

nodes and 13 links) and JPN48 Network (48
nodes and 82 links). Spectral slot was set to
50 GHz, and each link had 80 slots. DRL al-
gorithm used was PPO (Proximal Policy Opti-
mization)[8], and the optimization algorithm was
Adam[9] (learning rate 1e − 7, epsilon 1e − 7, and
weight decay 1e− 4).

Simulation Results
The first experiment evaluated the performance
with 10,000 requests after training with 500,000
requests. Fig. 3 and Fig. 4 show BPs versus eval-
uation steps until training convergence. In NSF,
our minimum BP was 0.79% at the 47-th step,
while that of KSP-FF was 2.47%. As for JPN48,
our minimum BP was 0.0% at the 19-th step, while
that of KSP-FF was 1.6%.

Next, trained Agent from the previous experi-
ment was subjected to various traffic loads. Fig. 5
and Fig. 6 show request BPs versus traffic loads
from 70 to 160. In both networks, Mask RSA out-
performed KSP-FF even when the traffic load dif-
fered from that used in training.

From two experiments show that the masking
approach enabled Agent to attain efficient RSA
regardless of the network size or the traffic load
used for training; accordingly, Mask RSA outper-
formed KSP-FF.

Conclusion
This paper proposed Mask RSA. Its concurrent
decision approach with mask outperformed KSP-
FF, and enabled efficient RSA algorithms to be
created for dynamic network operations in EONs.
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