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Abstract A low-complexity distribution matching algorithm that aims to achieve high information rate
for short blocklength probabilistic shaping by linear programming is proposed. At AIR of 4 bits/symbol
and SNR of 11.87 dB, the distribution matching blocklength is shortened by 256 times compared with
CCDM.

Introduction
Probabilistic constellation shaping has attracted
extensive research interests in optical communi-
cations for its energy efficiency gains and fine-
grained rate adaptability. It is practically en-
abled by a scheme called probabilistic ampli-
tude shaping (PAS)[1] which elegantly combines
forward error correction (FEC) and probabilis-
tic shaping. Distribution matching (DM), a key
element of probabilistic shaping, maps uniform
input bits into capacity-achieving output sym-
bols. Constant composition distribution matching
(CCDM)[2] is a well-known DM algorithm. It can
achieve channel capacity when DM output sym-
bol blocklength goes to infinity. However, due
to the rate loss caused by the feature of con-
stant composition, its performance declines for
short DM blocklengths. Besides, its implemen-
tation complexity increases for long DM block-
lengths. Recently, probabilistic shaping has been
investigated for short-reach links, such as data
center interconnects and 5G fronthaul networks,
which require low power consumption, low com-
plexity and minimum latency[3]. To meet these re-
quirements, short blocklength DM with high per-
formance is desirable. Algorithms were proposed
to reduce DM blocklengths[4]–[6] while maintaining
a high performance. They are all fixed-to-fixed
(F2F) DM. A variable-to-fixed (V2F) DM algorithm
was implemented by Geometric Huffman Coding
(GHC)[7] in 2011, which was developed from the
well-known algorithm, Huffman Coding, in data
compression.

In this paper, we propose a novel distribution
matching by linear programming (DMLP) algo-
rithm which significantly reduces the implemen-
tation complexity while maintaining high perfor-
mance. It achieves high information rate for short
blocklength probabilistic shaping by using linear
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programming to minimize the normalized informa-
tion divergence between the targeted capacity-
achieving distribution and the empirical distribu-
tion of channel input symbols. Compared with
GHC[7], DMLP is a more general method that can
be used for both F2F and V2F DM. At an achiev-
able information rate (AIR) of 4 bits/symbol, and
SNR of 11.87 dB, the blocklength of V2F DMLP is
shortened by 256 times compared with CCDM.
This outperforms the prior F2F DM algorithms
with blocklengths 3, 5.5 and 13 times shorter than
CCDM in references[4]–[6] respectively.

Principle of DMLP
Linear programming is an optimization problem
in which the objective and all constraint functions
are linear[8]. The purpose of DM is to map uniform
input bits B into capacity achieving output sym-
bols A. After source encoding, information bits
are independent and uniformly distributed. Con-
ventionally without DM, channel input symbols X
also have a near uniform distribution after linear
channel coding. Channel capacity is the maxi-
mum mutual information of channel input and out-
put, taken over all possible channel input symbol
distributions[9]. To reach the channel capacity, DM
is needed to shape channel input symbols into the
targeted capacity achieving distribution.

The architecture of DMLP is shown in Fig.1.
F2F DMLP maps fixed-length bit sequences Bm

of length m to fixed-length symbol codewrods An

of length n. While V2F DMLP maps variable-
length bit sequences B∗, with the length ranging
from mmin to mmax, to fixed-length An. The out-
put dimension of DM (n) is called DM blocklength.
Symbol A is treated as a random variable on the
alphabet A = {a1, ..., a|A|}, where |A| stands for
set dimension. In Fig.1, we take n = 4 and |A| =
4 as an example.

As is shown in Fig.1 (a) and (b), both F2F and
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Fig. 1: The architecture of DMLP: (a) fixed-to-fixed DMLP; (b) variable-to-fixed DMLP; (c) DM output concatenation for FEC.

Tab. 1: Optimization Problem Statement for F2F and V2F DMLP

Optimization Fixed to Fixed Variable to Fixed

Objective Function minDn = −E[R]−
|A|∑
j=1

PA(aj) log2 PA(aj) (1)

E[R] E[R] = m
n (2) E[R] =

∑
m

2−mm
n

∑
i

xi[m] (3)

PA(aj) PA(aj) =

∑
i
2−mxiTi[j]

n (4) PA(aj) =

∑
i

∑
m

2−mxi[m]Ti[j]

n (5)

Constraints xi ≤ µi,∀i (6)
∑
m
xi[m] ≤ µi,∀i (7)∑

i

2−mxi = 1 (8)
∑
m

2−m
∑
i

xi[m] = 1 (9)

V2F DMLP are implemented with look up table
(LUT) drawn inside the DMLP square blocks. The
left side of the LUT containing bit sequences is
called “sequence codebook”. Similarly, the right
side is called “symbol codebook”. The dashed
lines show the mapping between Bm (or B∗)
and An. F2F DMLP is simply implementable
by chunking input bit streams into length m se-
quences and then following the LUT. As for V2F
DMLP, the implementation takes two steps. The
first step is to partition input bit stream into se-
quences that are the same as B∗ in the sequence
codebook. To avoid confusion during the parti-
tion, B∗ sequence needs to be prefix-free[10]. It
can be shown that any input bit stream can be
partitioned into the pre-designed B∗ sequence.
V2F DMLP first checks whether input bit stream
of length mmin exists in the sequence codebook
by searching all B∗ of length mmin. If there is no
B∗ of length mmin the same as the input stream,
it will include one more bit of the input stream and
continue to search B∗ of length mmin + 1. The
sequence codeword searching stops when the in-
put bit stream is the same as B∗ in the sequence
codebook. The second step of V2F DMLP imple-
mentation is simply finding the corresponding An

in the LUT. To combine DMLP with FEC follow-
ing PAS scheme[1], a concatenation of DM output
symbol blocks is needed as is shown in Fig.1(c).

Information divergence measures the differ-
ence between two distributions in information the-
ory[9]. The normalized information divergence be-

tween PÃn , the empirical codeword distribution
generated by DM, and Pn

A, the target codeword
distribution, is given by Dn =

D(PÃn‖Pn
A)

n
[2]. The

key of DMLP is to design the LUT such that Dn is
minimized. Conventionally without DM, the origi-
nal symbol codebook contains |A|n symbol code-
words. Intuitively, for F2F DMLP, Dn can be re-
duced by removing some An from the original
codebook so that the remaining symbol code-
words have a distribution closer to the target. For
V2F DMLP, the probability of each An is weighted
by the length of its matchedB∗. Intuitively, An that
helps to reduceDn can be assigned a shorter B∗.

The LUTs are generated for F2F and V2F
DM by solving an optimization problem stated in
Tab.1. PA and PA are empirical and target dis-
tributions of symbol A respectively. R is the DM
code rate. We can show that the objective func-
tion to minimize Dn can be further derived into
Eq. (1). Since PA is fixed, Eq. (1) is a linear
function of E[R] and PA. The optimization prob-
lem can then be solved by a linear programming
(LP) solver. The calculations of E[R] and PA (Eq.
(2-5)) are different between F2F and V2F DMLP.
This is mainly because PÃn is the same for all An

in F2F DMLP, whereas it has different values in
V2F DMLP as it depends on the lengths of B∗.

Type is a terminology in information theory[9].
Here a type of a symbol codeword An means the
composition of An. For example, a combination
of 3a1, 1a2, and 2a3 is one type for A6. By classi-
fying codewords An according to their types, the



Fig. 2: Performance comparison of DMLP and CCDM: (a) Normalized information divergence Dn over DM blocklength n; AIR for
64QAM over SNR (b) from 0 to 25 dB; (c) from 11.5 to 13 dB.

number of optimization variables are significantly
reduced. The optimization variables x and param-
eters i, j,m, T, µ in Tab.1 are explained as follows.
Index i represents different types of codewords
An. Parameter µi is the maximum number of re-
alizations of An for type i. Parameter Ti[j] defines
the exact composition of An with type i. j is the
index of symbol A realization aj . For example,
T2[3] = 1 means An of type 2 has 1 a3 in the com-
position. Variable xi[m] for V2F DMLP is the total
number of An of type i matched to B∗ of length
m in the LUT. For F2F DMLP, all sequences have
the same length so variable x only has index i and
doesn’t have index m. The task of the LP solver is
to find the values for variable xi[m] or xi. Length
m of bit sequences is a free parameter. The best
(range of) m can be found by simulation.

Optimization constraints are shown in Eq. (6-
9). Constraints of Eq. (6-7) follow the restrictions
that the total number of An with type i should not
exceed its maximum µi. Constraints of Eq. (8-9)
are set to ensure all possible realizations of input
bit streams can be divided into sequences that
are the same as Bm or B∗ in the sequence code-
book, and to ensure B∗ sequence is prefix-free.

Simulation Results and Discussion
We compare the performance of DMLP and
CCDM over an AWGN channel through simula-
tions. Following the PAS scheme[1], the target
distribution for DM output symbols is Maxwell-
Boltzmann distribution. DMLP codebook design
is implemented using Pyomo optimization pack-
age and GLPK linear programming solver under
Python environment. Other parts of the simula-
tions are conducted in MATLAB. Normalized infor-
mation divergenceDn and achievable information
rate (AIR)[4] are used as the performance metrics.

Fig.2(a) shows the normalized information di-
vergence Dn of DMLP and CCDM over DM block-
length n for symbol alphabet A = {1, 3, 5, 7} and
target distribution PA = (0.4415, 0.3209, 0.1654,

0.0722). At Dn = 0.0033, V2F DMLP has n of
8 whereas CCDM has n of 5276. Similar reduc-
tions hold for other blocklengths. Compared with
CCDM, V2F and F2F DMLP significantly reduce
the blocklength by a factor of 659.5 and 10.5 re-
spectively. It is because CCDM only has code-
words of a single composition, whereas DMLP
has codewords of various types.

Fig.2 (b) and (c) show the AIR of 64QAM DMLP
and CCDM over SNR. AWGN channel capac-
ity and uniform 64QAM without DM are also in-
cluded as reference. At n=8 and AIR=4 bits/sym-
bol, DMLP improves SNR sensitivity by 4.83 dB
compared with CCDM. V2F DMLP with n=4 and
CCDM with n=1024 have similar performances.
At AIR=4 bits/symbol, they both are around 0.81
dB more power-efficient than the uniform 64QAM
and are within 0.16 dB of the channel capacity.
The blocklength of V2F DMLP is reduced by 256
times compared with CCDM. This factor of re-
duction is much larger than 3[4], 5.5[5], and 13[6]

among the existing algorithms.
From the comparison above, we can see that

V2F DMLP has much better performance than
F2F DMLP. The LUT size for both DMLP is rea-
sonably small. At n=4 and SNR=14, the number
of symbol codewords in the LUT is 128 and 256
for F2F and V2F DMLP respectively. As for imple-
mentation complexity, V2F is more complex than
F2F. However, it is still acceptable as the expected
number of sequence codeword searching opera-
tions is just around 6.3 per input bit.

Conclusions
We proposed a novel linear programming based
distribution matching algorithm that achieves high
information rate for short blocklength probabilistic
shaping by minimizing the normalized information
divergence. At AIR of 4 bits/symbol and SNR of
11.87 dB, the blocklength is shortened by a factor
of 256 compared with CCDM, which is desirable
for short-reach applications.



References
[1] G. Bocherer, F. Steiner, and P. Schulte, “Bandwidth effi-

cient and rate-matched low-density parity-check coded
modulation”, IEEE Trans. Commun., vol. 63, no. 12,
pp. 4651–4665, 2015.

[2] P. Schulte and G. Bocherer, “Constant composition dis-
tribution matching”, IEEE Trans. Inf. Theory, vol. 62,
no. 1, pp. 430–434, 2016.

[3] K. Zhong et al., “Digital signal processing for short-
reach optical communications: A review of current tech-
nologies and future trends”, J. Lightw. Technol., vol. 36,
no. 2, pp. 377–400, 2018.

[4] T. Fehenberger et al., “Multiset-partition distribution
matching”, IEEE Trans. Commun., vol. 67, no. 3,
pp. 1885–1893, 2019.

[5] P. Schulte and F. Steiner, “Divergence-optimal fixed-to-
fixed length distribution matching with shell mapping”,
IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 620–
623, 2019.

[6] A. Amari et al., “Introducing enumerative sphere shap-
ing for optical communication systems with short block-
lengths”, J. Lightw. Technol., vol. 37, no. 23, pp. 5926–
5936, 2019.

[7] G. Bocherer and R. Mathar, “Matching dyadic distri-
butions to channels”, in Proc. Data Compress. Conf.,
2011, pp. 23–32.

[8] S. P. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge, 2004.

[9] T. M. Cover and J. A. Thomas, Elements of Information
Theory. J. Wiley, 2005.

[10] J. Cho, “Prefix-free code distribution matching for prob-
abilistic constellation shaping”, IEEE Trans. Commun.,
vol. 68, no. 2, pp. 670–682, 2020.


