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Abstract We propose a practical solution of enumerative sphere shaping to minimize the average 
symbol energy of the output sequences, which permits lower rate loss and a Gaussian-like distribution, 
squeezing out the last shaping gain at short block lengths.

Introduction 
Recent several years, considerable attention has 
been paid to probabilistic shaping (PS) due to its 
ability to achieve the shaping gain of up to 1.53 
dB compared to traditional uniform modulation 
formats[1], as well as fine rate adaptions[2]. 
Probabilistic amplitude shaping (PAS) with 
constant composition distribution matching 
(CCDM) is the most popular solution for PS 
implementation[3,4]. However, there exist some 
stringent real-world constraints for efficient 
hardware implementation of CCDM such as the 
latency, throughput, implementation complexity, 
and power consumption. The CCDM requires 
output block lengths beyond approximately 500 
symbols to achieve negligibly small rate loss[4]. 
And large block lengths lead to the drawbacks of 
arithmetic complexity and throughput limitation. 
Thus, efficient shaping techniques have recently 
been studied extensively for short block lengths[5]-

[7]. Among them, enumerative sphere shaping 
(ESS), which map a k-bit string to an N-tuple of 
amplitudes satisfying a maximum-energy 
constraint, achieves lower rate loss than CCDM 
at the same shaping rate. However, ESS cannot 
achieve the minimum average sequence energy, 
because it chooses 2k amplitude sequences 
lexicographically for binary transmission. To 
handle this problem, ESS was optimized by 
modifying the ESS trellis in a rather heuristic 
manner, resulting in an average energy very 
close to the minimum, but still not exactly 
minimum[8]. 
In this work, we propose a novel way for ESS to 
squeeze out the last shaping gain for short block 
lengths, called optimum ESS (OESS). By 
employing two ESS trellises, the sequences with 
low energy are preferentially used for binary 
transmission, permitting a minimum average 
energy. The energy efficiency, amplitude 
distribution and rate loss of OESS are 
theoretically analyzed and compared with ESS 
and CCDM. Finally, we perform a Monte Carlo 

simulation to investigate the rate performance of 
OESS in additive white Gaussian noise (AWGN) 
channel. 

ESS and OESS 
The implementation of ESS relies on the 
bounded-energy enumerative trellis[7]. We 
consider to map a k-bit string to an N-tuple of 
amplitudes taking value from the shaping set A  
of length N with energy no larger than E , where 

 1 1( , , , ) : ( )N N
NA a a a a e a E     and na 

 1,3, , 2 1mA   . The trellis for N = 4, m = 3 and 

E = 60 is shown in Fig. 1. 

The node in the trellis are addressed with (n, e), 
where e represents the accumulated energy of 
amplitude sequences over the first n dimensions 
for n = 0, 1, ꞏ ꞏ ꞏ ,N. These energy values are 
indicated in black. Branches connecting a node 
in column n − 1 with a node in column n represent 
the nth components of sN, Ns  . The number 
written in bold&red is the number of possible 
ways to reach a final node starting from (n, e) 
which is denoted by e

nT , which can be computed 

by 
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Fig. 1: Enumerative trellis for N = 4, m = 3 and E = 60. 



where 1e
NT   for e E  . The details about ESS 

can refer to Ref. [7]. The number of sequences 
that can be represented by the trellis is given by 

0
0T , which is 79 for the trellis in Fig. 1. For binary 

transmission, only 2k sequences are actually 
employed, which means that 64 sequences are 
chosen from 79 sequences. However, as ESS 
orders sequences lexicographically, it cannot 
guarantee that low-energy sequences are 
preferentially used[8]. As shown in Fig. 2, ESS 
employs 64 sequences from 79 sequences 
bounded by the energy of 60. Some sequences 
with lower energy of 36, 44 and 52 are 
abandoned, while 15 sequences with energy of 
60 are employed, degrading the energy-
efficiency of ESS. 

To further promote the performance of ESS, we 
propose OESS which can achieve the minimum 
average symbol energy. First, we choose the 
minimum E  for which the trellis has at least 2k 

sequences, i.e.,    2 8kE E       . Here, 

we consider the situation of N = 4, m = 3 and E   
= 60, which corresponds to the Fig.1. Second, 
two ESS trellises are used for shaping mapping, 
as shown in Fig. 3. The first trellis is the normal 
ESS trellis but with bounded energy 8E   , 

which has 0
0 2kT  . Thus, there are 58 sequences 

represented in the first trellis. The second trellis 
shown in Fig. 3(b) is different from normal ESS 
trellis, which is represented by T̂ . This trellis is 

established by setting ˆ 0e
NT   for e E   and 

ˆ 1E
NT



 . In other words, the paths to the node of 

energy E  are closed for the first trellis, and 
these paths consist of the second trellis. Finally, 
consider an input sequences, which can be 
converted to a decimal number I. If 0

0I T , it will 

be sent to first trellis for coding. Otherwise, we get 
0

0I I T   , and it is sent to the second trellis for 

coding. In this way, the sequences with energy 
lower than E  are fully used, permitting the 
minimum average symbol energy. As for the 
decoding processing, the energy of the input 

amplitude sequences is first calculated, then the 
corresponding trellis is chosen for decoding. The 
energy distribution of sequences employed by 
OESS is shown in Fig. 4. Consequently, OESS 
achieves the minimum average symbol energy of 
9.6875, while ESS can only achieve the average 
symbol energy of 10.1875. 

Analysis 
The performance of OESS is investigated in 
terms of operational amplitude distribution, 
energy efficiency and rate loss. The amplitude 
distribution of the sequences represented by the 
first trellis can be calculated by 

 22 11 9
1 1 1 1( ) [ , , , ]

m

p a T T T
   .            (2) 

Because all sequences in the first trellis are used, 
the set of sequences is permutation invariant. 
The amplitude distribution of the sequences 
represented by the second trellis is more complex. 
The calculation processing is introduced in Ref. 
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Fig. 2: The distribution of sequences employed by ESS. 
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Fig. 3: Two trellises for OESS. (a) The normal ESS trellis 

with N = 4, m = 3 and E = 52. (b) The specific trellis for 

sequences with energy E = 60. 

 
Fig. 4: The distribution of sequences employed by OESS. 



[8], and the distribution is represented by 2 ( )p a . 

Then the total distribution can be calculated by 

0 0
1 0 2 0( ) ( )* ( )*(2 )kp a p a T p a T     .      (3) 

The operational amplitude distribution of OESS 
with 20N   is shown in Fig. 5. We use 

OESS MBP P P    to represent the probability 
difference between the distribution produced by 
OESS and corresponding Maxwell-Boltzmann 
(MB) with the same average energy. The 
absolute values of P  fluctuate within 0.015 over 
the shaping rate range from 0.2 to 2 bits/amp, 
where the shaping rate is defined as k N . 

The energy efficiency of OESS, ESS and CCDM 
is shown in Fig. 6. At the shaping rate of 1.5 
bits/amp, OESS achieves the average symbol 
energy of 8.416, which is 0.236 and 4.584 less 
than that of ESS and CCDM. The numerical rate 
loss comparison with N of 20 and 40 are shown 
in Fig. 7. The rate loss lossR   with a finite block 

length is defined as loss MB S( )R X R  , where XMB 

is a MB-distributed random variable with the 
same average energy as the output sequence[7]. 
In general, over the shaping rate range from 0 to 
2 bits/amp, OESS results in lower rate loss 
compared to ESS and CCDM. The maximum 
shaping gain improvement is estimated to be 
0.031 and 0.271 bits/amp compared with ESS 
and CCDM with N = 20. 

Simulation 

Finally, we perform a 64-QAM Monte Carlo 
simulation to evaluate the actual performance of 
OESS in AWGN channel. The PAS architecture 
is utilized and the shaping rate is chosen to be 
1.5 bits/amp. Error-free decoding can be verified 
by the normalized generalized mutual information 
(NGMI)[9]. At the NGMI threshold of 0.858, 
compared with ESS and CCDM, OESS achieves 
receiver sensitivity gains of 0.122 dB and 1.899 
dB with N = 20, and 0.088 dB and 1.032 dB with 
N = 40, respectively. 

Conclusions 
We propose OESS which can always achieve the 
minimum average sequence energy, squeezing 
out the last shaping gain with short block lengths. 
By using two ESS trellises for the shaping 
encoding and decoding, the sequences with low 
energy are preferentially used for binary 
transmission. The operational amplitude 
distribution of OESS is very close to MB 
distribution, permitting remarkable shaping gain. 
Compared with ESS and CCDM, OESS achieves 
average symbol energy reduction of 0.236 and 
4.584, and shaping gain improvement of up to 
0.031 and 0.271 bits/amp. In the simulation, 
OESS achieves receiver sensitivity gains of 
0.122 dB and 1.899 dB compared the other two 
methods. 
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Fig. 5: Probability distribution (left) of ESS and MB 

distribution and their difference (right). 

 
Fig. 6: Energy efficiency of OESS, ESS and CCDM. 
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Fig. 8: NGMI versus SNR in AWGN channel. 

 
Fig. 7: Investigation on the rate loss. 
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