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Abstract The certification of private randomness of quantum origin is paramount for cryptographic
applications. By trusting the measurement device, conjugate quadrature measurements allows us to
quantify insecure side-information on the measured state with bounded energy. We demonstrate a live
self-checking random number generator using squeezed states.

Introduction

Random Number Generators based on intrinsic
quantum randomness play a pivotal role in quan-
tum communication technologies, such as quan-
tum key distribution which demands randomness
independent from all pre-existing knowledge. The
current realisations of quantum random number
generators (QRNG) span a spectra of varying de-
grees of trust and generation rates, where there
is a strong tradeoff between these factors. For
instance, a laser-phase-noise QRNG with a fully
characterised source and measurement can of-
fer large amounts of raw quantum entropy, up to
68 Gbps[1]. On the other hand, given completely
untrusted devices, device-independent QRNGs
have reported up to 62 MBits of genuine, unpre-
dictable randomness based on violation of Bell in-
equality in a loophole free manner, while taking a
total time of 96 hours[2]. For practical purposes,
intermediate approaches, such as semi-device-
independent (SDI)-QRNGs try to gain the best of
both worlds, and thus offer attractive solutions for
near-future applications while still enjoying high
bit-rate and secrecy.

For these SDI-QRNGs, which operate under a
few reasonable assumptions, several features are
desirable. Firstly, since the SDI-QRNG is not fully
trusted, self-testing[3] is often required to validate
the amount of secure randomness. Moreover, the
device needs to be able to certify that the gener-
ated randomness is of quantum origin. Finally, in

order for the device to qualify as a fully operating,
self-calibrating and secure QRNG, the aforemen-
tioned operations (self-testing and certification),
together the final random bits generation should
all be performed in real-time.

In this work[4], we demonstrate such a pro-
tocol that fulfills the above conditions by mea-
suring a quantum state with no classical coun-
terpart, namely a squeezed state, to generate
randomness. Under the assumptions that our
measurements are reliable, we are able to cer-
tify the quantum origin of the randomness with
active-quadrature-switching homodyne detection
scheme. Furthermore, together with the prac-
tical assumption of having a finite input energy,
we are able then to exploit the entropic uncer-
tainty relation (EUR) upon conjugate quadratures
(Q̂ for the data quadrature and P̂ for the checking
quadrature), which allows us to quantify the ex-
tractable randomness from the quadrature of Q̂
conditioned on any (classical or quantum) side
information that a malicious eavesdropper may
have intercepted.

Theory
Given an input quantum state ρA that may be
mixed and correlated to a malicious party E, i.e.
ρA = TrE(ρAE), the goal of our real-time SDI-
QRNG protocol is to quantify the min-entropy
from the discretised data quadrature Q̂δq of the
state ρA conditioned upon on the side-information
accessible to an eavesdropper E. However, the



Fig. 1: Scheme and protocol of the SDI-QRNG. A local oscillator whose phase is locked to measure the check quadrature is
interfered with an untrusted entropy source which can be a squeezed, thermal or some unknown state. The checking quadrature
dictates the secure randomness to be extracted from the data quadrature. By performing randomness extraction on-line, part of

the random bits can be resupplied into the system for random basis switching, thus allowing the device to operate in a fully
self-testing manner. Figure from[4]

system E is generally inaccessible in experi-
ments, and hence a worst case estimate would
have to be made, by performing a full tomogra-
phy of ρA and subsequently optimising all com-
patible states, which is intractable for a generic
infinite-dimensional system. Fortunately, by us-
ing the EUR, the quantity of interest can be lower
bounded by the following equation:

Hmin(Qδq|E) ≥ Hlow(Pδp)

:= −Hmax(Pδp)− log2 c(δq, δp)

(1)

where c(δq, δp) is a measure of the incompati-
bility between the two quadrature measurements
dependent on the bin sizes δp and δq. Inter-
estingly, the bound Hlow(Pδp) can be obtained
unconditionally by simply measuring the discre-
tised check quadrature P̂δq and evaluate the max-
entropy Hmax(Pδp). In practice, the detection has
a finite range, so we assume that the input states
ρA are limited in phase space and have no sup-
port in the two extreme bins. In other words, by
bounding the energy of the input state, we alle-
viate the need to perform a full tomography upon
an uncharacterized source.

Experiment
Figure 1 shows a schematic of our real-time SDI-
QRNG protocol. To demonstrate the self-testing
feature and robustness of our protocol, we op-
erate the device with two distinct states: a non-
classical squeezed state and a classical thermal
state. The 3 dB-squeezed state was generated
with a seeded doubly resonant optical paramet-
ric amplifier in a bow-tie geometry[5]. Thermal
states with different variances were generated us-

ing a pair of amplitude and phase electro-optic
modulators, driven by two independent function
generators with white-noise signals. At the mea-
surement stage, the homodyne detector is first
phased-locked to the checking quadratures to es-
timate lower bound of the secure randomness
Hlow(Pδp). Subsequently, by locking to the data-
quadrature, Toeplitz hashing is then performed on
the acquired raw random bits (n = 16000 12-bit
datapoints) to extract the amount randomness es-
timated during the checking round. Finally, some
of the secure random bits obtained are loaded
back into the system for random switching be-
tween the check and data measurement stages.
We note that prior to each check measurement,
the dark noise, shot noise and the bin-size are
re-evaluated to ensure that our entropy estima-
tion is stable with respect to experimental condi-
tions. As a result, our protocol is self-testing, self-
sustaining and self-calibrating.

Result
Figure 2 shows the results from our experimen-
tal demonstration for squeezed states and ther-
mal states. The entropy estimation is in ex-
cellent agreement with the numerical simulation
based on our frequentist estimator. For com-
parison, the theoretical bound for the uncondi-
tional min-entropy Hth

min(Qδq) and Hth
low(Pδp) as-

suming discretized Gaussian distribution are plot-
ted. The theoretical conditional curve for the con-
ditional case is always lower than the uncondi-
tional case, as one would expect from a source
with untrusted correlation or noise. For a thermal
state, the higher the variance, the higher the min-
entropy, which reflects the apparent random noise
in the quadrature measurement, yet the condi-



Fig. 2: Entropy bound for (a) thermal states (b) a P̂ -squeezed state with 33% loss. The red solid lines: the theoretical min
entropy of the random-data quadrature Q̂. The blue solid lines: the theoretical bound to the conditional min-entropy Hmin(Q|E)

obtained by the EUR. The blue points show the corresponding experimental data calculated in real-time using a frequentist
estimator on data samples of length n = 16000. Dashed lines show the corresponding simulation results and the shaded area

corresponds to a 5 standard deviation uncertainty region. Figure adapted from[4].

tional min-entropy is lower because the state may
well be correlated with a mode obtained by Eve.
Meanwhile, for a squeezed state, the purity of
the state is scrutinized via the check quadrature,
thus the entropy independent of increases as the
squeezing value increases. The final average se-
cret bit generation rate, taking into account the full
measurement cycle into account is 8 kb/s.

Discussions
Notably, the novelty of our approach is two-fold:

1. Using EURs in real-time randomness es-
timation. While there have been previous
demonstrations of EUR-based QRNG[6],[7],
the randomness estimation was always eval-
uated offline. Here, we demonstrate the pos-
sibility to utilize the EUR techniques even in
a real-time fashion, which is critical for the
applicability of the QRNG in many crypto-
graphic scenarios such as quantum key dis-
tribution. We show that it is possible to per-
form the full protocol (including dynamical
quadrature switching, locking, entropy bound
evaluation and randomness extraction) on
the fly. This provides us the advantage point
to uncover and subsequently resolve poten-
tial issues and challenges in estimating min-
entropy with finite data length.

2. Nonclassical state - squeezed state for
more randomness. In our protocol, the
quantum origin of the randomness is guar-
anteed by the use of highly non-classical
squeezed states. By checking the squeezed
quadrature, we show that the anti-squeezed
quadrature provides a higher bit-rate in the
same protocol. Unlike in the thermal-noise
case, this noise is not correlated with another
system. For example, having 5 dB squeez-

ing on the source increases the entropy rate
by around 10% compared with the vacuum.
To our knowledge, this is also the first exper-
imental instance of utilising squeezing as a
secure entropy source for a QRNG.

Conclusions
In summary, we have successfully demon-
strated a real-time SDI-QRNG incorporating
measurement-basis switching and hashing us-
ing a squeezed state. This protocol produces a
fully automated entropy validation, which is robust
against source impurities and imperfections, thus
offering the user a peace of mind after switching
the device on.

A strongly appealing aspect of our approach is
that the generation speed can be readily scale up
by incorporating high speed randomness extrac-
tion[8], non-mechanical optical switching and us-
ing a broadband squeezed light[9]. Furthermore,
in view of miniaturisation, on-chip squeezing[10] is
an promising avenues for our SDI-QRNG protocol
to be implemented, realising a bona-fide random
number generator with no classical counterpart.
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