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Abstract Unpolarised and co-propagating ASE depolarizes a cw probe via the fibre’s Kerr nonlinearity. We 
theoretically analyse these previous experimental observations of ultra-fast and PMD-dependent polarization state 
fluctuations. The probe’s propagation does not obey the Manakov equation and is governed by an advanced 
Schrodinger formalism for addressing fibre PMD. 
 
Introduction 
To deliver timely optimized system designs and cost-
effective solutions, the undersea telecom industry strives 
for more accurate transmission modelling; now even 
scrutinizing weak acousto-optical channel interactions 
for next gen system designs[1]. Here, we theoretically 
analyse a recently observed transmission phenomenon 
that we refer as NL depolarization (NLDP) of light in fibre 
which can also slightly penalize a data signal. Un-
polarised optical noise (ASE) rapidly changes the state 
of polarization (SOP) via the fibre’s Kerr nonlinearity from 
a fully-polarized and co-propagating cw light by inducing 
anti-symmetric phase noise in both of its orthogonal 
polarization states.  
This novel phenomenon has neither been predicted nor 
experimentally observed prior to its first reporting in 
2019[2-4]. Meanwhile, the NLDP-induced SOP fluctua-
tions have been experimentally characterized in the 
time[2,3] and frequency[4] domains, and in Stokes space[5]. 
While comparable small, it provides an excellent case 
study of effects that do not obey commonly-used trans-
mission theory such as the Manakov equation (ME)[6]. 
The heuristically-determined ME has become an integral 
part of soliton theory and is often used in today’s system 
modelling due to its relatively simple form and highly 
accurate results. Based on this success, attempts for 
deriving the ME from the more fundamental Coupled NL 
Schrodinger equations (CNLS), have been published[7]. 
We challenge them as they rely on an illusively 
compelling mathematical argument.  
NLDP should not be confused with NL polarization 
rotation (NLPR)[8,9]. Essential for NLDP is a non-
vanishing fibre PMD. In contrast, NLPR can appear in 
fibres with zero PMD. We have previously analysed 
NLDP by solving the CNLS in the presence of fibre PMD 
for multi span systems[2]. Here we follow a similar 
concept while streamline the theory for a single span 
propagation which reveals the somewhat counter-
intuitive NLDP growth with increasing PMD.  

CNLS for Anti-symmetric Perturbations   
For the sake of simplicity, we consider a cw field  
(probe) residing in a narrow spectral gap of a 
surrounding, fully un-polarized, and co-propagating 
strong ‘loading’ ASE field  with a boxcar-shaped 
spectrum (Fig.1). The known CNLS[10] for propagation in 
z direction can approximate this scenario well: 

 

 
 

where the wavelength-independent , 1x(y)
-1, 2x(y), and  

denote the attenuation, the polarization-dependent 
group velocities and their dispersion coefficients, and the 
Kerr nonlinearity of a waveplate, respectively. The high 
modal birefringence  of regular SSMF induces fast 
oscillating but ineffective NL interference, known from 
discussions about the Manakov-PMD equation[11], 
however negligible in our analysis and are thus left out. 
The remaining stochastic perturbation is decomposed 
into a symmetric and an anti-symmetric term (Eq. (3)) 
with respect to the loading’s field. While both describe 
weak and independently treatable NL interactions in a 1st 
o. perturbation calculus, the polarization-dependent sign 

of the anti-symmetric perturbation (right side of Eq. (3)) 
root-causes opposite phase noises in both principal axes 
that manifests experimentally as NLDP  

 
Negligibly contributing terms (in a2

x(y), ax(y)
*, Ax(y), Ay(x)

*, 
etc.) of the perturbation are unlisted. The impact of 
birefringence is disregarded by replacing 1x(y) with a 
polarization-independent group velocity 1

-1 but revisited 
at a later stage.  

NL Phase Noises in 1st order Approximation 
The right side of Eq. (3) weakly perturbs the probe 
expressed by adding a 1st o. correction term to 

 
Fig.1: a) Spectral grid for boxcar-shaped ASE spectrum with a probe residing 
in its centre gap. b) NL single span propagation for NLDP study. 
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it. We write the perturbation by means of the undistorted 
fields of the probe  and the loading . The 
latter’s components with amplitudes  form a comb 
(Eq. (4)) on an evenly spaced grid with an infinitesimal 
small angular frequency pitch (Fig.1). The probe 

 in 1st o. development and the ASE field read  
 (4) 

 
 

where stands for the propagation 
constant of a component at ‘ ’. We synthesize the Kerr 
nonlinearity in Eq. (3) as a sum to address the impact of 
low frequency beat noises among its terms. Due to 
phase matching conditions, this noise alone can 
efficiently interact with the probe and is used to redefine 
the perturbation term in Eq. (3) as   

 

Here ‘ ’ stands for the frequency spacing between the 
probe and the two beating ASE tones at , typically 
in the THz range. Due to coupling inefficiency, any 
beating at ‘ ’ among the two noise tones can be 
neglected when it resides beyond a few tens of MHz.  Eq. 
(3) holds separately for every ‘ ’ and ‘ ’ and its solution 
can be written by means of a Green’s function  

 

According to this Ansatz, the NL distortions are 
generated in fibre sections of incremental lengths, 
propagate thereafter linearly through the system, and 
coherently superimpose in the receiver plane. We 
convert the integral of Eq. (8) into a sum of infinitesimal 
short waveplates  (Eq. (9)) to analyse NL inter-actions 
in the presents of PMD. At the span output at  holds 

 

 

Alternating the sign of  conjugates its right side, except 
for its last and typically negligible small exponent 
( . Hence, pairing contributions at  
results into a correction with a 90○ phase offset relative 
to the undistorted probe. Therefore, all pairs of NL 
distortions stemming from single waveplates, generate 
pure phase oscillations in the receiver plane 

at a frequency . As  
holds, the oscillations in both orthogonal polarizations 
are 180○ out of phase and cause SOP fluctuations. We 
define for later purposes a temporal autocorrelation as 

 

where the indices  denote different waveplates and  
denotes the averaging over time and fields which 
involves re-establishing the birefringent fibre features in 
our model as detailed below.  

Phase Noise Correlation in Birefringent Fibre  
We model a birefringent fibre as a concatenation of 
waveplates to determine the correlation among 
incremental distortions stemming from two different 
plates and given by Eq. (9). Our x(y)-coordinate system 
aligns with the fast (slow) axis of a waveplate i.e. it 
rotates and follows the plates’ orientations along the 
propagation path. Birefringence, originating from axis-
specific group velocities ( 1x ≠ 1y), is incorporated in our 
model by means of a Jones matrix that transforms the 
SOPs from the probe and the noise components  
when traversing a waveplate. A Jones matrix  of a 
waveplate shall be given by a unitary matrix  

 

With  and a NL distortion gene-
rated in waveplate ‘ ’with length ‘ ’ concisely reads 

 

 

where  und stand for the undepleted noise 
components inside of waveplate constituted by Eq. (7), 
and the total number of waveplates, respectively. The 
correlation between contributions from two consecutive 
wave plates follows as 

 

 
where  and  represent the undistorted and 
undepleted probe field within waveplate ‘ ’ and the field-
averaged scalar product, respectively. We restore PMD 
in our fibre model by using matrices  obeying Eq. 
(11) and transforming wavelength-dependent the probe 
and ASE fields. After some algebra one finds    

 

 

with  
where double primes indicate statistically independent 
noises. Since  holds, we can evaluate Eq. (14) just 
at ‘ ’ but must treat the original noise components at 

 as uncorrelated. The theory of PMD statistics[12] 
specifies the de-correlation from two SOPs at different 
wavelengths which provides a correlation between the 
matrix elements  

 
where , , and  are the angular 
frequency spacing between the probe and two noise 
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components, the mean fibre DGD per √length, and the 
distance between the two waveplates, respectively. PMD 
effects across frequency intervals of size ~  like the 
spectral width of the distorted probe or spacing’s 
between two beating noise components are negligibly 
small. Hence, the sum of all incremental phase oscilla-
tions correlates as defined by Eq. (10) at the output like 

  

 

The above outlined calculus assumes two consecutive 
birefringent waveplates ‘ ’. But it holds for any pair 
of further spaced waveplates, indexed ‘ ’ with , 
as well. Since a matrix product  of 
intermediately located waveplates can be expressed by 
a single unitary matrix that fulfils Eq. (11), the conclusion 
from Eq. (14) will equally hold and leads to Eq. (17).  

Fibre PMD Constitutes NLDP  
System PMD introduces cut-off conditions via the 
Gaussian for the number of interacting waveplates 
addressed by the double sum of Eq. (17). Without this 
limitation, the sum tends to zero as its complex exponen-
tial function causes averaging. For a single span system 
with  and relatively short wave plates  we 
replace the double sum with an integral.     
Experimentally observed NLDP-caused SOP features 
such as speed, spectra, and scattering angles are 
detected after O/E conversion of the optical fields and 
conveniently reported in Stokes space. To derive such 
quantities, we limit the optical autocorrelation density by 
introducing electrical low pass filtering and then convert 
the result into Stokes space. The density of the optical 
autocorrelation (Eq. (17)) at  in Jones space reads for 
sufficiently long propagation  

 

and its integration over  yields the autocorrelation for 
the total phase noise in the electrical domain. For the 
sake of simplicity, we assume a fast enough polarimeter 
with an electrical detection bandwidth a 
sampling rate , and which means a 
significant PMD impact during the NL propagation as 
given in long-haul propagation across a multiple span 
systems. Its 2nd order in  determines the variance of the 
stochastic SOP speed and reads 

 

      

where  stands for the total ASE launch power at the 
fibre input. To transform the incremental field distortions, 
determined by Jones calculus, into Stokes space we 
represent the assumed normalized probe’s Jones vector 

 at the fibre output by  

 

With and  
where  obey known distributions[13] to uniformly cover 
the Poincare sphere. NLDP causes their small temporary 
fluctuations  whose autocorrelations must equal 

  due to averaging 
by random birefringence along the propagation path. The 
corresponding Stokes vector to Eq. (20) 

 can be analysed similarly thus one finds  
 

Identifying =  yields the 
variance of the NLDP-induced SOPspeed in Stokes space 

   

Its PMD dependence differentiates NLDP from NLRP. 

Non-Manakovian Propagation Features 
We have derived the NLDP-induced SOP speed 
variance from the CNLS (Eq. (1)) by anti-symmetrizing 
its perturbation term that weights the impact of the 
orthogonal polarization by a factor 2/3. A similar set of 
propagation equations forms the often-used Manakov 
equation (ME) that utilizes a perturbation with equally 
rated polarizations as this simplifies algebra and allows 
for close form solutions in soliton theory. If we would 
have started our derivation from the ME, not only the 
magnitude of the NLDP-induced SOP speed but also the 
ratio between phase noises generated by the symmetric 
(which we have not discussed here) and the anti-symme-
tric perturbation would differ. Such shortfall cannot be 
compensated by an a priori introduction of ‘one effective 
perturbation’ representing both the symmetric and anti-
symmetric distortion. Hence, a signal undergoing NLDP 
does not obey the ME in 1st o. approximation when 
ordinary and depolarization-caused phase distortions 
are compared. The ME, highly successfully applied in 
soliton theory, was originally heuristically found but later 
‘derived’ from the CNLS[7]. Note, this derivation is proble-
matic as it suggests that under the assumption of suffi-
ciently strong and rapidly changing fibre birefringence, 
i.e. negligible small NL PMD, the CNLS and the ME with 
a by 8/9 reduced effective nonlinearity yield equivalent 
solutions. This is not the case for NLDP. The underlying 
derivation utilizes a locally averaged nonlinearity for the 
effective NL perturbation. However, in case of NLDP, 
such a simplification of the CNLS to the ME will not 
provide consistent results since it does not correctly re-
present long-range NL interactions, as observed in multi-
ple span systems using Stokes vector spectroscopy[4]. 

Conclusions  
Our outlined analytical model yields under some simplify-
ing assumptions a closed-form solution for NLDP-
induced SOP speed in a single span system. An anti-
symmetric perturbation operator in the CNLSs generates 
phase noises that causes SOP fluctuations. A major 
finding of our model describes the PMD dependence of 
NLDP which differentiates it from other NL polarization 
phenomena like NLPR. Our derivations show that in the 
case of NLDP the CNLSs do not converge towards the 
Manakow equation as suggested by earlier work.  
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