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Abstract We propose a hardware efficient machine learning based polarization rotation rate 

estimation scheme by monitoring TIA gain in the standard integrated coherent receiver. The proposed 

method was experimentally verified with various signal formats and conditions, estimated up to 200 

kHz within 2.45 kHz error. 

Introduction 

Monitoring fast polarization rotation, also known 

as state of polarization (SOP) change, has been 

investigated for optical fibre transmission 

systems to prevent the signal degradation 

caused by Polarization Mode Dispersion (PMD) 

before the advent of digital coherent 

technologies, since PMD compensation was 

challenging at the optical domain [1]. Digital 

coherent technologies have enabled polarization 

multiplexing (PM) and also PMD compensation 

in digital domain. Still, it is important to monitor 

fast polarization rotation since polarization 

demultiplexing is realized by Multiple-input-

multiple-output (MIMO) equalizer and its 

tracking performance for fast polarization 

rotation is limited. Notably, fibre squeezing, 

mechanical vibration, temperature fluctuation, 

and even lighting strike result in fast polarization 

rotation [2]; therefore, it is important to monitor 

SOP changes not only to maintain the 

transmission performance but also to detect 

failure of optical transmission link. 

Obviously, additional measurement equipment 

would enable to monitor polarization rotation; 

however, it requires extra cost and footprint. 

Polarization state monitor by optical supervisory 

channel with polarization beam splitter (PBS) 

and two photodiodes (PD) has been proposed [2], 

but it still requires additional hardware 

components and it is restricted to single span 

links. Alternatively, relying on digital signal 

processing (DSP), applying Finite Impulse 

Response filter coefficients of MIMO equalizer to 

derive SOP in the Stokes coordinates [4, 5] is an 

attractive method since it does not require the 

extra hardware. However, as it uses the 

equalized signal, thus it is intrinsically limited by 

the polarization tracking performance of MIMO 

equalizer, which is not ideal due to circuit 

implementation constraints. Therefore fast SOP 

transients may possibly yield loss-of-signal, 

unable to calculate the polarization rotation rate. 

Here, we aim to propose a polarization rotation 

monitoring method without additional hardware 

and which is efficient even if the signal can no 

longer be demodulated. Therefore we focus on 

an essential hardware part of transceivers. 

To demodulate PM signal, Integrated Dual 

Polarization Intradyne Coherent Receiver (ICR) 
[6] is firstly used, it incorporates four sets of PDs 

and Trans-Impedance Amplifiers (TIA), and 

noticeably it features polarization and phase 

diversities. To maintain the signal quality, 

commercially available ICRs support auto gain 

control (AGC) mode for TIA, where it keeps 

constant output signal level regardless of the 

received signal condition. Therefore, it may be 

possible to estimate the polarization rotation rate 

from the information of TIA gain variation. 

In this paper, we propose a hardware efficient 

machine learning based polarization rotation 

rate estimation scheme by monitoring TIA gain 

variation. Compared with the other methods, the 

proposed method neither rely on the received 

signal format and condition nor require extra 

hardware. The proposed method was 

experimentally verified with various signal 

formats and conditions, and enabled the 

polarization rotation rate estimation up to 200 

kHz within a precision of 2.45 kHz. 

CNN based polarization rotation rate 

estimation using TIA gain monitoring 

The concept of CNN based polarization rotation 

rate estimation using TIA gain monitoring is 

shown in Fig. 1. The received PM signal is 

separated via PBS to recover two orthogonal 

polarizations that are steered to two 90°hybrid 

mixers. The hybrid mixer combines the received 

signal with the local oscillator (LO) to obtain 
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Fig. 1: Concept of CNN based polarization rotation 

estimation using TIA gain monitoring 
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baseband signal, outputs In-phase and 

Quadrature signal for both polarization. Each of 

outputs is connected with PD, interconnected to 

TIA that perform optical-to-electrical conversion 

for following DSP section. In this concept, we 

use TIA with AGC mode, where the amplifier 

gain is controlled by peak detector feedback 

loop. Assuming a PM signal, the hybrid mixer 

output has both polarization elements, which are 

then de-multiplexed by DSP. The mixing ratio of 

other polarization elements change when 

polarization dependent loss (PDL) exists, 

notably in optical components or in the 

transmission fibre. Thus, the output level of each 

hybrid mixer fluctuates with the polarization 

rotation. It is worth noting that fluctuation level 

depends on PDL, but even small amounts of 

PDL, like the ones in commercial systems, still 

introduce some detectable fluctuation. Typical 

gain feedback loop bandwidth of TIA is of MHz 

order, whereas fastest polarization rotations in 

WDM systems are a few hundred krad/s for 

lighting strikes; it is therefore possible to track 

SOP change in this manner, using the gain 

variation as a sensor for the polarization rotation 

rate. 

Concerning our proposed method, it does not 

require signal demodulation and therefore nor 

depend on conditions (power, OSNR) since gain 

feedback loop only uses peak level of the 

received signal. As it works on analog control 

loops, it is independent on modulation format 

and symbol-rate, which we demonstrate in the 

following parts. No additional hardware is used 

as we rely on ICR manual gain control (GC) pins 

which are also used for monitoring point of GC 

voltage variation in AGC mode; the control unit 

of digital coherent transceiver easily digitize GC 

variation by the low speed peripheral ADC. 

To estimate the polarization rotation rate from 

GC variation, we propose a deep learning based 

method using the logarithmic power spectrum 

density (PSD). The inset of Fig. 1 shows the 

measured PSD with the polarization rotation rate 

of 200 kHz. It clearly showed several high 

frequency peaks around 200 kHz. Then, we 

specifically selected a convolutional neural 

network (CNN) for deep learning as has been 

shown in use radio identification with PSD [7]. 

CNN is a kind of supervised learning, which not 

only has fully connected layers, but also has 

convolutional layers. We assume that CNN is 

advantageous under the limited frequency 

resolution of PSD since CNN effectively 

converge filters with the dataset which has time 

series correlation. In contrast, we observed that 

non-machine learning methods, such as the 

peak detection from PSD may suffer from 

insufficient frequency resolution and from 

contamination by the frequency response of 

gain feedback loop.  

Experimental setup and parameter settings 

for the validation 

Fig. 2 (a) shows the experimental setup and 

data analysis block for the validation of CNN 

based polarization rotation rate estimation using 

TIA gain monitoring. The Nyquist shaped 32- 

and 64-GBaud PM-QPSK, 16QAM, and 64QAM 

signal were generated with 100 kHz linewidth 

External cavity laser (ECL). The generated 

optical signal was fed into the polarization 

rotation stage, consisted of the polarization 

controller (PC), half-wave plate (HWP) rotator, 

and polarimeter. PC set fixed 100 rad/s with 

Rayleigh distribution, it sufficiently rotated SOP 

trace on all of Poincare sphere under the data 

acquisition period. HWP was dominant for the 

polarization rotation, the rotation frequency was 

set from 1 kHz to 200 kHz with 1 kHz resolution. 

The polarimeter was used for polarization 

rotation rate measurement as a reference of the 

validation. For back-to-back evaluations, ASE 

was loaded on the signal before the optical 

bandpass filter (OBPF) to adjust OSNR. For 

transmission experiments, we used 100 km 

SSMF, the fibre launch power was set to 0 dBm, 

resulting in a received OSNR of 28.6 dB/0.1nm. 

The optical signal was captured by the standard 

ICR and digitized by 80-GSa/s ADCs which 

were used for verifying the signal reception only. 

For collecting TIA gain variation dataset, 1-

MSa/s ADC was connected to GC-XI pin of ICR. 

 On the data analysis part, PSD datasets were 

generated from measured TIA gain variation by 

Discrete Fourier Transform (DFT), where each 

500 samples of time variant data was converted 

to 250 points of PSD datasets over 0 to 500 kHz. 

CNN is implemented by Keras [8] with Tensorflow 

[9]. The HWP rotation frequencies were provided 

to the CNN for training. As shown in Fig. 2 (b), 

our network has five hidden layers, consisting of 
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Fig. 2: (a) Experimental setup for the validation, (b) 
Structure of CNN 



three one dimensional convolutional layers and 

two fully connected layers (FC). In addition, we 

use a drop-out rate of 0.2 after FCs to avoid 

over-fitting. The rectified linear unit activation 

function is used except for the output layer 

where linear regression is used. Mean squared 

error is used to compute the loss, and Adam is 

used as optimization of the weight coefficients of 

NN. To train CNN, 64-GBaud-16QAM with 41 

dB/0.1nm was selected, the number of training 

datasets was 160,000. 

Results and Discussion 

First, we verified the proposed polarization 

rotation rate estimation with 64-GBaud-16QAM 

with 41dB/0.1nm. Note that we used 40,000 test 

datasets which were different from that of used 

for training CNN. In Fig.3 (a), the mean error 

and standard deviation (SD) of the estimated 

polarization rotation rate were plotted as a 

function of pre-set HWP rotation rate. The insets 

in Fig. 3 (a) show PM-16QAM constellation with 

1 kHz rotation rate. The error vector magnitude 

(EVM) for both polarization were similar value, 

indicated negligible PDL existed. First, 

measured polarization rotation rates by 

polarimeter were plotted, HWP rotation rates 

were almost identical with measured value, so 

we used HWP rotation rate as a reference 

afterwards. 

For comparison, we also applied non-machine 

learning based peak detection to the same 

dataset. To verify the effect of peak detection, 

each 2,000 DFT points was used with moving 

average filtering, and applied simple calibration 

which subtracted frequency response of GC 

loop filter, otherwise, relevant peaks could not 

be detected, causing wrong monitored values.  

Even though, peak detection method suffered 

from high estimated error and SD, up to 67 kHz 

and 139 kHz, respectively. Comparatively, CNN 

was successfully trained to estimate the 

polarization rotation rate, it showed high 

estimation accuracy, errors were less than 2.49 

kHz, and SD were less than 6.68 kHz. 

Next, we verified the trained CNN with various 

different test datasets contained each OSNR, 

modulation format, and symbol rate. Fig. 3 (b) 

shows the mean value of mean error and SD of 

each 40,000 dataset over HWP rotation rate 

from 1 kHz to 200 kHz. Overall, the trained CNN 

showed the ability to estimate the polarization 

rotate rate with different signal formats and 

conditions. Note that relatively high SD were 

observed with 10dB OSNR cases where the 

signal could no longer be demodulated; 

although excessive noise components affected 

PSD of GC voltage variation, we showed 

sufficient estimation accuracy, less than 2.45 

kHz error and 8.02 kHz standard deviation. 

Finally, the trained CNN was applied for 64-

GBaud-PM-16QAM signal after 100km SSMF 

transmission. In Fig. 3 (c), the estimated 

polarization rotation rate and SD were plotted as 

a function of HWP rotation rate. The proposed 

method showed the robustness with chromatic 

dispersion of 1700ps/nm from SMF transmission, 

mean estimation error and SD were 0.63 kHz 

and 1.69 kHz, maximum values were less than 

3.55 kHz and 11.22 kHz, respectively.  

Conclusions 

We propose a hardware efficient CNN based 

polarization rotation rate estimation scheme by 

monitoring TIA gain in the standard ICR. We 

experimentally demonstrated the proposed 

method. The CNN was trained with Nyquist 

shaped 64-Gbaud-PM-16QAM and showed high 

estimation accuracy and the robustness when it 

was applied to different signal formats and 

conditions even after 100km SSMF transmission. 

The estimation errors were less than 2.45 kHz 

over polarization rotation rate up to 200 kHz with 

1 kHz resolution. 
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Fig. 3: Polarization rotation rate estimation results, (a) compared CNN with peak detection method, 

 (b) verified trained CNN with each signal format and condition (c) verified trained CNN with 100km SSMF transmission 
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