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Abstract A concatenated coded-modulation scheme for 4D constellations is proposed that consists of
an inner complexity-optimized non-binary LDPC code and an outer zipper code. The related packing,
shaping, and coding gains reduce the required SNR by 1 dB over conventional BICM with DP-16QAM.

Introduction
In dual-polarization (DP) optical systems, four-
dimensional (4D) modulation schemes can pro-
vide an improved power efficiency[1],[2]. In partic-
ular, signal constellations based on the checker-
board lattice D4 enable a packing gain[3]–[5] over
conventional DP quadrature-amplitude modula-
tion (DP-QAM). Moreover, spherically-bounded
4D constellations, comprising points within a 4D
hypersphere instead of a hypercube, readily pro-
vide an additional shaping gain[5],[6].

Recently, a coded-modulation (CM) scheme
was proposed[4],[5] that makes effective use of D4-
based constellations with soft-decision (SD) for-
ward error correction (FEC). Still, the two distinct
binary component codes used in this approach
(i) are generic low-density parity-check (LDPC)
codes that are not complexity-optimized, (ii) have
to be successively decoded, and (iii) are not tai-
lored to a CM approach that employs spherically-
bounded (inherently-shaped) 4D constellations.

In this work, a concatenated CM architecture
is proposed that is carefully designed to deliver
the inherent packing and shaping gains of D4-
based constellations. Following the philosophy
of multi-level coding[7] (MLC), we use a 4D set
partitioning (SP) to construct a few bit levels with
low reliability, thereby maximizing the reliability
of the other bit levels. The less reliable levels
are then protected by a single inner, non-binary
code, whereas the more reliable ones are only
protected by the outer code. To this end, the bi-
nary code design from[8] is adapted to obtain a
non-binary LDPC code with minimized decoding
data flow. This inner code is tasked to reduce
the bit error ratio (BER) on the bits passed to the
hard-decision (HD) decoding for the outer zipper
code[9] beneath its threshold, enabling the outer
decoder to bring the total BER below 10−15.

The proposed CM scheme is assessed over the
additive white Gaussian noise (AWGN) channel
for an information rate of Ri = 6.971 bit/symbol,
compatible with the Implementation Agreement
(IA) 400ZR[10]. When compared to conventional
bit-interleaved coded modulation (BICM) for DP-
16QAM, the 4D CM technique achieves a total
gain in signal-to-noise ratio (SNR) of about 1 dB,
with only 4 (non-reliable) bit levels protected by an
inner, complexity-optimized 16-ary LDPC code.

Four-Dimensional Signal Constellations
We briefly review the construction and properties
of 4D signal sets. In Fig. 1, their constellation-
constrained capacities (in bit/symbol) are plotted.
Additionally, we show a two-dimensional projec-
tion of the related signal points, see also[5].

DP-16QAM is illustrated as the reference ap-
proach. When we normalize the constellation’s
squared minimum (4D) distance to d2min = 1, its
points form a subset of the algebraic structure of
Lipschitz integers[3] (blue crosses in Fig. 1). We
denote this particular type as Lipschitz constella-
tion[4] LM with 4D cardinality M (M = 162 = 256

for DP-16QAM). If the cardinality is increased to
M = 1024 (DP-32-cross-QAM) or M = 4096 (DP-
64QAM), an SNR gain of about 0.7 dB is achieved
for the target rate Ri. However, since a larger
hypervolume is covered in 4D space by the in-
creased number of signal points, this SNR gain
comes at the cost of an increased implementation
penalty (e.g., due to the analog front end).

In 4D space, the number of points can be dou-
bled within the same hypervolume without a de-
crease in minimum distance. The related alge-
braic structure with d2min = 1, which is isomor-
phic to the D4 lattice, is known as Hurwitz in-
tegers[3]. A 512-ary Hurwitz constellation[4] (red
dots in Fig. 1) can be constructed from a 256-ary
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Fig. 1: Constellation-constrained capacities in bit/symbol
versus the SNR in dB (energy per 4D symbol Es over the

one-sided noise power density N0). The inset shows the 2D
projection of the signal points of L256, H512, and W512.

Lipschitz constellation. This type of constellation
is also known as 512-SP-QAM obtained by exten-
sion[2]. The additional bit enables a packing gain
of 0.58 dB at almost no additional implementation
penalty compared to DP-16QAM[5].

The signal points of L256 and H512 are located
within the same 4D hypercube, cf. Fig. 1. As pro-
posed by G. Welti[6], the performance can further
be improved by drawing subsets of the Hurwitz
integers within a 4D hypersphere. The resulting
Welti constellation W512 (green circles) achieves
a shaping gain of 0.24 dB over H512. Without the
need for any additional architectural complexity,
even the capacity of DP-64QAM is surpassed and
the Shannon limit is approached to within 0.57 dB.

Four-Dimensional Set Partitioning
The D4 lattice can be partitioned according to[11]

D4 → Z
4 → √

2D4 → √
2Z4 → 2D4 → . . . , i.e.,

into alternating, scaled (and rotated) variants of
the 4D integer lattice Z

4 and D4 itself. For HM

and WM (isomorphic subsets of D4 with initial
squared minimum 4D distance d2min,0 = 1), a re-
spective binary SP chain can be derived. The
related chain for W512 is illustrated in Fig. 2: In
the 1st partitioning step, W512 is decomposed into
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Fig. 2: Illustration of first (left) and second (right) partitioning

step for the 512-ary Welti constellation W512. Real and
imaginary part of the first polarization are shown; real and

imaginary part in the second polarization are fixed to ±1/4.

two 256-ary Z
4-based subsets (triangles versus

squares), still with d2min,1 = 1. In the 2nd step,
128-ary D4-based subsets with the squared mini-
mum intra-set distance d2min,2 = (

√
2)2 = 2 are ob-

tained. Following this partitioning chain, in every
2nd level, d2min grows by a factor of 2. As shown be-
low, the value d2min,4 = 4 after 4 levels can already
enable highly reliable uncoded transmission.

Concatenated Non-Binary FEC Architecture
The proposed concatenated FEC approach is
shown in Fig. 3. The generic model is illustrated
for a 512-ary constellation A, i.e., H512 or W512.

First, the message sequence 〈q〉 with elements
drawn from the binary field F2 is encoded with
the outer code (ENCout). The resulting stream is
parallelized into log2(M) = 9 bit levels q̃0, . . . , q̃8.
Then, the bc = 4 least reliable (lowest) levels are
additionally encoded with the inner code (ENCin).
In contrast to conventional MLC[7], where bc bi-
nary encoders are used, a single non-binary code
over the extension field F2bc is applied. The bu = 5

upper (reliable) levels are directly passed to the
constellation mapper M. Thereby, a mixed par-
titioning[7] is used, where the first bc = 4 bit lev-
els are labeled according to the above SP chain,
whereas a pseudo-Gray labeling[12] is employed
in the upper (reliable) bu = 5 levels. The bc+bu = 9

bits are jointly assigned to a 4D symbol a ∈ A.
DP transmission over the AWGN channel mod-

els the linear regime of the optical fiber. Noisy 4D
symbols y = a + n are obtained, where n repre-
sents 4D noise with independent components.

At the receiver, non-binary SD decoding is
performed to reconstruct the bc levels protected
by the inner code (DECin). The decoded bits
ˆ̃q0, . . . ,

ˆ̃q3 address one of the 2bc = 16 constella-
tion subsets after 4 SP steps; their 2bu = 32 points
represent the 5 uncoded bits. They are jointly es-
timated (ˆ̃q4, . . . , ˆ̃q8) by a simple quantization of y
to the nearest point within the subset (QUAN); they
are hence available without any decoding delay.
After parallel-to-serial conversion, the outer HD
decoder (DECout) handles the residual bit errors
and provides the estimated bit sequence 〈̂q〉.
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Fig. 3: System model of the concatenated non-binary FEC
architecture for DP transmission over the AWGN channel.



Tab. 1: Bit-level capacities at the inner information rate of
Rin

i = 7.187 bit/symbol and related inner code rate Rin
c .

Level Labeling d2min L256 H512 W512

8

Pseudo
Gray 4

0.999 0.998 0.998
7 0.999 0.997 0.997
6 0.999 0.995 0.996
5 0.998 0.994 0.994
4 0.998 0.992 0.992
3

Set Par-
titioning

2
0.904 0.817 0.830

2 0.857 0.746 0.762
1

1
0.433 0.279 0.359

0 − 0.369 0.258

Rin
c (level 4–8 uncoded) 0.729 0.547

In contrast to BICM, the inner, non-binary CM
approach is optimal from an information-theoretic
point of view and is thus suited to exploit the 4D
constellations’ capacities. This benefit comes at
the expense of high decoding complexity[13],[14].
To address that issue, the design approach from[8]

originally defined for binary codes is adapted to
obtain non-binary LDPC codes with minimal de-
coding data flow. Besides, by only encoding the
lowest bc = 4 levels, the field size (F16) is kept
small. In this work, we restrict to conventional
(non-approximate) message passing[13],[14].

The 16-ary LDPC code (of rate Rin
c = 0.547)

enables—along with the 5 uncoded levels—the
inner information rate of Rin

i = 4 · 0.547 + 5 =

7.187 bit/symbol. The respective bit-level capac-
ities[7] of the considered constellations are listed
in Tab. 1. As expected, the 4D SP leads to large
capacity gains after the levels 1 and 3. The capac-
ities of the pseudo-Gray-labeled levels are close
to one; they can be left uncoded. The inner CM
scheme is concatenated to an outer binary zipper
code[9] (rate Rout

c = 0.97), altogether leading to
Ri = 7.187 · 0.97 = 6.971 bit/symbol as defined in
the IA 400ZR[10]. A similar architecture is possible
for L256 (DP-16QAM), where—due to the Z

4/D4

SP chain—3 coded levels are sufficient.1

Numerical Results
Simulations over the AWGN channel with an in-
ner frame length of 6000 symbols—equal to the
length of the non-binary LDPC code—have been
conducted. The proposed architecture is as-
sessed for L256, H512, and W512 and compared
to the following binary schemes: (i) concatenated
FEC based on 1D SP for L256 with an optimized
binary inner LDPC code[8], (ii) BICM for L256 with
a generic binary LDPC code[5], and (iii) two-stage
BICM (TS-BICM) for H512 with two binary generic

1In the IA 400ZR, DP-16QAM is deployed with the code
rates Rin

c = 119/128 and Rout
c = 239/255. As a more sophis-

ticated outer code is used in this work, the inner information
rate Rin

i is slightly modified to enable the same total rate Ri.
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Fig. 4: Average BER on the bits passed to the outer decoder
versus the SNR in dB (105 frames). Concatenated non-binary
FEC according to Fig. 3 and Tab. 1 (solid lines) and various
binary approaches (dotted and/or dashed lines) are applied.
The capacities from Fig. 1 are indicated by vertical lines. The

horizontal line represents the threshold for the outer code.

LDPC codes[5]. The binary code lengths were
chosen such that the same frame length was cov-
ered. In general, floating-point sum-product mes-
sage passing with 10 iterations was performed.

In Fig. 4, the average BER on the bits passed to
the outer decoder is plotted; this includes the bits
obtained from inner decoding as well as the un-
coded ones, cf. Fig. 3. A conservative error rate
of BER < 1.7 ·10−3 is targeted; below that thresh-
old, the outer zipper code can bring the BER be-
low 10−15, cf.[9]. At the target BER, with L256,
the proposed non-binary scheme (3 coded levels)
performs almost as well as the binary 1D SP ap-
proach (4 coded levels). Both approaches exhibit
a gain of about 0.15 dB over BICM (8 coded lev-
els). With H512, the non-binary scheme enables
0.62 dB SNR gain, even a little bit more than the
expected packing gain of 0.58 dB. The related TS-
BICM scheme[5] (joint BICM in 2nd stage) shows
a significant loss, mainly caused by error propa-
gation from the 1st stage in the scenario at hand.
With W512, the non-binary approach achieves the
expected shaping gain of about 0.25 dB over
H512. A total shaping, packing, and coding gain of
around 1 dB over conventional BICM is present.

Conclusion and Outlook
A concatenated FEC scheme with complexity-
optimized non-binary inner LDPC code has been
proposed. In combination with 4D constellations,
gains of up to 1 dB over conventional BICM and
DP-16QAM are enabled. A detailed complexity
study including suboptimal low-complexity decod-
ing strategies[14]–[16] will be a topic of future work.
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