
NN-based PCS distribution optimization for practical channels  
Xueyang Li(1), Zhenping Xing(1), Md Samiul Alam(1), Maxime Jacques(1), Stéphane Lessard(2), David V. 

Plant(1) 
(1) Department of Electrical and Computer Engineering, McGill University, Montréal, Québec H3A 0E9, 
Canada, xueyang.li@mail.mcgill.ca 
(2) Ericsson Canada, Montréal, Québec H4S 0B6, Canada 

Abstract We propose an optimization scheme for the distribution of probabilistically shaped signals in 
practical non-AWGN channels based on a neural network and genetic algorithm. The optimized input 
distribution enables 23.5% higher throughput than the Maxwell-Boltzmann distribution in a short reach 
channel with a SiP transmitter. 

Introduction 
Probabilistic constellation shaping (PCS) enables 
an adaptable information rate (IR) with a fixed 
rate forward error correction (FEC) code and can 
provide an ultimate shaping gain of 1.53 dB in 
additive white Gaussian noise (AWGN) channels. 
For this, PS has been introduced into intensity-
modulated direct detection (IMDD) systems in 
recent years for an improved throughput[1,2]. The 
Maxwell-Boltzmann (MB) distribution is widely 
used in PCS since it is a close to optimal 
distribution in AWGN channels. However, the 
AWGN channel approximation often deviates 
from real-life channels over a short reach where 
the signal is impacted by the device nonlinearity 
and non-AWGN noise sources including the laser 
flicker noise and clock leakage frequencies. Thus, 
in this scenario the MB distribution is suboptimal, 
and it is desirable to optimize the input 
distribution with respect to the actual channel 
characteristics in a practical way. Previous 
papers have adopted either exhaustive search[3] 
or numerical optimization techniques[4,5] based 
on the prior knowledge of an analytical channel 
model for nonlinear channels. However, a 
comprehensive analytical model that accurately 
characterizes practical channels is hard to 
construct and requires precise pre-measurement 
of multiple channel parameters. Neural networks 
have a strong nonlinear approximation capability 
and can be used to accurately model the 
characteristics of practical channels so that the 
performance metric can be precisely predicted 
with respect to the input distribution. 

In this paper, we propose an optimization 
scheme for the input distribution of practical 
channels using a neural network (NN) and the 
genetic algorithm (GA). The NN is used to predict 
the generalized mutual information (GMI) with 
respect to the input distributions, whereas the GA 
is used to optimize the input distributions at 
desired spectral efficiencies (SE) based on the 
trained NN. We show numerically that the NNGA-
optimized input distribution outperforms the MB 

distribution in an IMDD system with device 
nonlinearity. We also experimentally validate the 
efficiency of the NNGA scheme in optimizing the 
input distribution of an O-band IMDD system over 
2-km of single-mode fibre (SMF) with a silicon 
photonic (SiP) traveling wave Mach-Zehnder 
modulator (TWMZM). It is found that the NNGA-
optimized distribution achieves 23.5 % higher 
throughput relative to the MB distribution 
assuming a practical 8/9 fixed-rate low-density 
parity-check (LDPC) code with an NGMI 
threshold of 0.91 at 80 Gbaud, which 
corresponds to a net data rate of 197.3 Gb/s.  

NNGA-assisted distribution optimization 
The AWGN channel assumption for short reach 
channels are often not valid due to (i) the device 
nonlinearity resulting from the phase shifter, the 
modulator and the trans-impedance amplifier 
(TIA); (ii) the coloured noise spectrum after 
equalization in a bandlimited channel; (iii) non-
AWGN sources such as the laser flicker noise 
and the clock leakage frequencies. Fig. 1. depicts 
a schematic of the NNGA-assisted distribution 
optimization scheme for a non-AWGN channel. 

 
Fig. 1: Schematic of the distribution optimization using NNGA. 

In this scheme, we use a neural network (NN) to 
approximate the nonlinear multivariable function 
that maps the input distribution D at the 
transmitter to the GMI at the receiver, which is 
taken as the performance metric in a probabilistic 
amplitude shaping (PAS) scheme[6]. Note that 
shaped signals of different distributions D1, D2… 
are sent at the transmitter to probe the channel 



so that the NN can effectively learn the channel 
characteristic. The trained NN as a multivariable 
function fNN is fed to a GA module which 
optimizes the input distribution at desired SEs, i.e. 
entropies. Note that this combined NNGA 
scheme is also applicable to the distribution 
optimization of long-reach channels with low 
dispersion. 

In the numerical study, we optimize the 
distribution of probabilistically shaped (PS) PAM-
8 signals in a short reach IMDD system with 
device nonlinearity. As the distribution of PS-
PAM-8 symbols is symmetric following the PAS 
scheme, we reserve the probability mass function 
(PMF) of the positive half PS-PAM-4 symbols to 
reduce the number of inputs to the NN. The PMF 
is formulated as D = [P1 P2 P3 P4] and each PMF 
is created by first generating a 1×4 vector of 
uniformly distributed random numbers within [0,1], 
whose sum is normalized to 1 for a valid PMF. 
Constant composition distribution matching 
(CCDM) is used to approach the desired PMFs[7]. 
Fig. 2 shows a schematic of the optimized NN 
with two hidden layers that contain 16 and 32 
hidden units, respectively. The PMF is taken as 
the input of the NN, whereas the GMI is taken as 
the output of the NN. We use the rectified linear 
unit (ReLU) function as the activation function at 
the hidden layers and minimize the mean 
squared error (MSE) between the NN output and 
the GMI from the training set. We use a mini-
batch size of 128 and the Adam algorithm to 
optimize the NN weights. The training set, 
validation set, and testing set contain 1000, 250, 
and 250 PMF-GMI pairs, respectively. The NN is 
trained over 800 epochs. 
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Fig. 2: Schematic of the NN with two hidden layers. 

Fig.3 plots a simplified model for the short 
reach IMDD system. The sinusoidal function 
simulates the modulator nonlinearity, where k is 
a parameter within [0,1] that controls the swing of 
a normalized signal x. The maximum swing, i.e. 
from -π/2 to π/2 is obtained at k=1, which 
corresponds to a maximum modulator nonlinear 
effect. A 20 dB AWGN source is cascaded after 
the nonlinear module to simulate the overall  

 
Fig. 3: A simplified model for short reach IMDD systems.  

system noise. Note that this simplified model is 
used for the purpose of validation of the NNGA 
scheme for a short reach channel with 
nonlinearity. In actual short reach systems, the 
material nonlinearity of the phase shifter, the 
saturation of the TIA also contributes to the 
device nonlinearity. 

After training, the NN is seen as a multivariable 
function fNN and finding the PMF that maximizes 
the function output, i.e. GMI at a certain entropy 
is equivalent to an optimization problem 
formulated as follows 
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Since this is a nonconvex nonlinear minimization 
problem, we use the genetic algorithm to search 
for approximated solutions by setting -fNN as the 
fitness function and performing mutation, 
crossover, and selection of the encoded input 
distributions. Fig. 4 (a) plots the GMI and NGMI 
as a function of k for both the MB and the NNGA-
optimized distributions at entropy of 2.6.  

 
Fig. 4: (a) GMI and NGMI as a function of k for the MB and 
NNGA-optimized distributions. (b) PMF histograms of the MB 
distribution and NNGA-optimized distributions at different k. 



The figure shows that the GMI of the MB 
distribution decreases sharply when k is greater 
than 0.6, whereas the GMI of the NNGA-
optimized distribution decreases in a much 
slower rate. The NGMIs also show a similar trend 
for the MB and the NNGA-optimized distributions. 
As rate-adaptive FECs are costly, a fixed-rate 
FEC with PCS is more desirable in practical 
systems to enable the rate adaptation, and the 
NNGA-optimized distribution with a higher NGMI 
possesses a higher bound of the allowed code 
rate of practical FECs with k greater than 0.6. Fig. 
4 (b) shows the corresponding PMF histograms 
of the MB distribution and the NNGA-optimized 
distribution at k of 0.3, 0.6, 0.9 at entropy of 2.6. 
It is observed that as k increases, i.e. with a 
stronger modulator nonlinear effect, the NNGA 
scheme determines that the probability of the 
outermost symbol level needs to approach zero 
as an appropriate distribution to mitigate the 
impact of the MZM nonlinearity. 

Experimental setup and results 
We evaluate the performance of the NNGA-
optimized shaping in an IMDD system in the O-
band. Fig. 7 depicts the experimental setup. The 
carrier at 1302 nm is coupled into a SiP-TWMZM 
with a 3-dB E-O bandwidth of 45 GHz. The 
TWMZM modulates the carrier with an amplified 
RF signal generated by a 120 GSa/s arbitrary 
waveform generator (AWG). After propagation 
over 2 km of SMF, the signal is detected by a 
photodiode (PD)+TIA with a 3-dB bandwidth of 
45 GHz and sampled by a 62 GHz real-time 
oscilloscope (RTO) for the post-processing. The 
transmitter and receiver DSP are also shown in 
the figure. 

 
Fig. 5: Experimental setup and DSP. 

The NN is trained following the procedure as 
described earlier. We transmit 80 Gbaud PS-
PAM 8 signals to assess the performance of the 
NNGA-optimized shaping in this setup. Fig. 6 
shows the PMF histograms and eye diagrams of 
the MB distribution and NNGA-optimized 

distribution, respectively, at entropy of 2.6. For 
the MB distribution, it is seen that the eye-
openings close to the outermost levels are almost 
indiscernible due to the system nonlinearity. By 
contrast, the NNGA distribution has much more 
distinguishable eye openings and thus a 1.2-
bits/symbol higher GMI. 

 
Fig. 6: PMF histograms and eye diagrams of (a) the MB 
distribution, and (b) the NNGA distribution at entropy of 2.6. 

Fig. 7 plots the GMI and NGMI versus a varied 
entropy for both the MB distribution and NNGA-
optimized distribution. The figure shows that the 
NNGA-optimized distribution leads to a higher 
GMI than the MB distribution at the same NGMI, 
i.e. the code rate of an ideal fixed-rate FEC.  
Assuming a practical 8/9 LDPC code with an 
NGMI threshold of 0.91[8], the NNGA-optimized 
distribution allows a 0.47 bit/symbol higher 
information rate. This translates to 23.5 % higher 
throughput at 80 Gbaud and corresponds to a net 
data rate of 197.3 Gb/s. 

 
Fig. 7: GMI and NGMI as a function of the entropy. 

Conclusion   
We demonstrate that the NNGA-optimized 
distribution outperforms the MB distribution in 
practical short reach channels with nonlinearity 
both numerically and experimentally. We show 
that 23.5 % higher throughput can be achieved 
using the NNGA-optimized distribution compared 
to the MB distribution in an O-band IMDD system 
with a SiP transmitter over 2 km assuming the 8/9 
fixed rate LDPC code.  
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