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Abstract We investigate the complexity and performance of recurrent neural network models as post-
processing units for the compensation of fibre nonlinearities in digital coherent systems carrying 
polarization multiplexed 16-QAM signals. We show that RNNs are promising nonlinearity compensators 
especially in dispersion unmanaged systems at reasonable complexity.  

Introduction 
Fibre-optic communication industry is struggling 
to cope with the exponentially increasing capacity 
demands coming from next generation mobile 
networks and high bandwidth applications. 
Advanced modulation formats, nonlinear 
modulation techniques, space division 
multiplexing and/or bandwidth extension towards 
other bands such as O-band are the dominant 
methods being currently considered for capacity 
enhancement. The major constraint factor of 
capacity seems to be the nonlinear Shannon limit 
attributed to Kerr-induced fibre nonlinearities in 
their intra-channel and inter-channel form and 
their interaction with amplified spontaneous 
emission noise. Lately, there exists an upward 
trend in the investigation of machine learning 
techniques either for the mitigation of 
transmission impairments[1] or for the estimation 
of quality of transmission (QoT) of modern optical 
communication systems [2]. Different paradigms 
based on artificial neural networks (ANNs) [3], 
convolutional neural networks (CNNs)[4], 
recurrent neural networks (RNNs)[5] are among 
the techniques that have been successfully 
applied mostly in intensity modulation/direct 
detection systems (IM/DD) and in orthogonal 
frequency division multiplexing (OFDM) [1]. Very 
recently, we proposed for the first time the 
utilization of Long Short-Term Memory (LSTM) 
network, which is a well-known RNN model [6] for 
the compensation of fibre nonlinearities in digital 
coherent systems for multi-channel polarization 
multiplexed 16-QAM systems. A detailed 
analysis regarding the effect of LSTM model 
parameters and channel memory was conducted 
in order to reveal the limits of LSTM based 
receiver with respect to performance and 
complexity in comparison to Digital Back 
Propagation (DBP). In the present work, we 
extend the analysis by considering two more 
RNN models that are in principle less complex 

than LSTM in order to investigate the potential of 
adopting bidirectional RNN models in next 
generation digital coherent optical 
communication systems at low complexity.  
 
System modeling  
In this paper we numerically investigate the 
efficiency of three types of bidirectional Recurrent 

 

 
Fig. 1: Conceptual illustration of the LSTM, GRU and 

Simple RNN units 



Neural Networks (bi-RNN) in compensating fibre 
nonlinearity in digital coherent optical 
communication systems: LSTM, GRU, and a 
Simple RNN. Fig 1 illustrates the RNN units that 
we use whilst Eq.(1)-(3) calculates the output ht.   

  

 

 
The sequential neural model is demonstrated in 
fig. 2. The input xt is the distorted symbol 
sequence which has the following form xt,m=[xt-

k,…,xt-1, xt, xt+1,…,xt+k], where m stands for the 
overall length of the word which is equal to 
m=2k+1. That is for the symbol at time t we also 
launch k preceding and k succeeding symbols so 
as to track intersymbol dependencies. The length 
of m depends on the foreseen channel memory 
strictly related to accumulated chromatic 
dispersion. Each symbol in each window contains 
four values/features (I and Q for both 
polarizations) as the input Xx-pol and Xy-pol 
feeding the Bidirectional RNN layer of L hidden 
units. In order to calculate bit error rate (BER) we 
drive the RNN network output to a Fully 
Connected Layer of 16 units and then to a 
Softmax layer that carries out the classification 
among 16 classes/QAM symbols of both 
polarizations for all the symbols at the output [6]. 
We train the model using the many to many 
approach which is beneficial as it takes into 
account the nonlinear interplay among adjacent 
bits caused by chromatic dispersion [6]. The RNN 
models are built, trained and evaluated in Keras 
with Tensorflow 2.3 GPU backend. We consider 

40.000 symbols for training, 20.000 for validation 
and 60.000 for testing with unknown data. We 
consider fibre parameters similar to that of single 
mode fibres @ 1550 nm. The symbol rate is 25 
Gbaud per 16-QAM polarization, channel 
spacing equals to 50 GHz, amplifier spacing 
equals to 50 km with noise figure being equal to 
5 dB as in [6]. At the receiver we consider ideal 
carrier synchronization, polarization 
demultiplexing and dispersion compensation with 
the use of a frequency domain equalizer (FDE). 
Fibre propagation was modelled based on 
Manakov’s equations using split-step Fourier 
method. The RNN processor was applied the 
central WDM channel that is in principle the most 
heavily impaired and requires only one sample 
per symbol.  

Results and Discussion  
Our analysis considers transmission along 
1000km for 10 WDM channels. RNN processors 
are always placed after the FDE which 
undertakes dispersion compensation. Fig. 3 
shows BER as a function of the number of hidden 
units (h.u.) that the network uses. Dispersion is -
21 ps2/km (dispersion unmanaged SMF 
transmission) and we train the different RNNs 
with a symbol word of 201 symbols that exceeds 
channel memory. It can be seen that all models 
perform adequately and equivalently as they 
improve BER by almost an order of magnitude 
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Fig. 2: Bi-RNN model architecture 

 
Fig. 3: BER as a function of optical power and number of hidden units for the Bidirectional GRU (a), LSTM (b) and SimpleRNN (c) 
in 1000km optical transmission with a dispersion of -21 ps2/km. The system compensated only with the use of FDE exhibited best 

BER equal to 5x10-3 

 

 

Fig. 2: BER as a function of o ptical power and number of hidden units for the Bidirectional GRU (a), LSTM (b) and 
SimpleRNN (c) in 1000km optical transmission with a dispersion of -21 ps2/km. 

 



compared to a transmission system that uses 
only linear equalization (best BER=4x10-3 for 
FDE not illustrated in the figure). It can be seen 
that LSTM offers best performance for a 
minimum of 14 units, whilst GRU and simpleRNN 
for 16 units. As already stated, memory size 
increases with the amount of end-to-end 
accumulated dispersion. In order to study the 
efficiency of Bi-RNN models for different channel 
memory scenarios we carried out numerical 
simulations for -4, -12 and -21 ps2/km second 
order dispersion values. Although in real systems 
a dispersion value different than that of a typical 
SMF (~-21 ps2/km) is translated to the use of 
dispersion compensating modules or other types 
of fibres that differentiate other critical 
parameters of the link, here we assume that all 
the other parameters of the system are not 
affected in order to identify how the RNN-based 
equalizer behaves at different channel memories 
assuming that signal to noise ratio and 
nonlinearity are kept constant. Apart from FDE 
equalization, we also conducted numerical 
simulations for digital back-propagation (DBP), 
only for -21 ps2/km dispersion considering single-
channel processing as in [6]. In fig. 4, one can see 
that FDE compensated systems exhibit almost 
identical behavior with minimum BER close to 
4x10-3 despite differences in accumulated 
dispersion. On the contrary, simpleRNN 
compensation exhibits better BER at larger 
accumulated dispersion. This behavior was 
verified for GRU and LSTM as well and is related 
to the coherence time of the channel which is 
much longer than the symbol period as 
dispersion increases. Hence inter-channel 
effects become very slow and easily tracked by 
the bi-RNN equalizer [6], [7]. Bi-RNN performs 
better than DBP as well as the latter equalizes 
solely intra-channel effects and ignores inter-
channel ones [6]. Finally, we investigated the 
receiver complexity in all cases. In general, the 
overall model complexity depends on the number 
of parameters (weights) that each network needs 
to calculate (see Eq. (1)-(3) and fig. 1), on the 
number of hidden units and the length of the input 

word. According to fig. 3, LSTM needs at least 14 
units whilst GRU and SimpleRNN need 16 units 
to achieve optimal BER performance. So, in 
terms of hidden units the three models are more 
or less equivalent. Regarding word length, this 
does not depend on the model architecture, it is 
strictly related to channel memory. The only 
parameter differentiating the three models is the 
complexity of each unit. Based on fig. 1 one can 
easily calculate the number of parameters for 
each model based on the expression 	
𝑏𝑖𝑅𝑁𝑁-.,./ = 2𝐵[𝐿(𝐿 + 𝑓) + 𝐿] + (2𝐿 + 1)𝑀 
where B=4,3,1 for LSTM, GRU and SimpeRNN 
respectively, L the number of hidden units, f=4 
the number of input features (see fig. 2) and M 
the number of categories (M=16 in the case of 16-
QAM). The results are depicted in fig. 5 as a 
function of hidden units. It is evident that 
simpleRNN is by far less complex than LSTM and 
GRU. Taking into account that LSTM complexity 
is comparable to DBP’s at long distances[6] it can 
be safely assumed that a simple bi-RNN is even 
more promising as a nonlinearity compensation 
scheme performing better than DBP both in terms 
of BER and complexity.  

Conclusions 
In this paper we studied three RNN models, 
(LSTM, GRU and simple RNN), as potential fibre 
nonlinearity compensators in high capacity digital 
coherent systems. At distances of 1000 km all 
models exhibited BER improvement of an order 
of magnitude compared to systems utilizing 
exclusively linear equalization. Their efficacy 
becomes stronger for dispersion unmanaged 
systems. Finally, among the three models, the 
simple RNN exhibits the lower complexity without 
lagging behind in BER performance. This model 
is a promising candidate for mid-term deployment 
in nonlinearity impaired coherent transmission 
systems.  
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Fig. 5: Number of parameters as a function of the 
hidden units used in bi-LSTM, GRU and RNN models 

 
 

Fig. 4: BER as a function of optical power for dispersion 
of -4, -12 and -21 ps2/km, with linear equalization (FDE) 
and with a Simple Bidirectional RNN of 16 hidden units 
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