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Abstract We propose a novel design of neural network for mitigating the fiber nonlinearity, employing
a structure based on physical modelling. The neural network achieved nearly 5 times BER reduction in
a field trial when transmitting WDM 200G DP-16QAM over a 620 km legacy link.

Introduction
Machine learning (ML) based methods have been
recently considered as a highly promising so-
lution to address various challenges arising in
optical communications[1],[2]. In particular, neu-
ral network (NN) based algorithms have demon-
strated high potential for Kerr nonlinearity mitiga-
tion (NLM) in optical fiber links[3]–[5]. The knowl-
edge about the communication system structure
can be used to build up advanced NN architec-
tures that provide additional performance gains
compared to the conventional NLM approaches
like digital back-propagation (DBP)[3]. The abil-
ity to quickly collect abundant training datasets,
needed for proper NN operation[6], from the huge
amount of symbols passing through the link, con-
stitutes an advantage of applying NNs for NLM
used in several published works. First, for the re-
gression task, works such as[7],[8] presented an
NN-based NLM architecture with delay taps which
allowed the equalizer to deal with the channel
memory and time-dependent nonlinear response.
Second, for the classification task, in[8]–[10] ML has
been applied for the determination of nonlinear
decision boundaries in QAM modulation formats.

In this paper, a new design for a complex-
valued artificial NN performing receiver-based
Kerr nonlinearity equalization (NLE) is proposed.
The suggested design was numerically tested
for the cases of the transmission of a single-
channel dual-polarized (DP) 64QAM root-raised
cosine (RRC) shaped signal with roll-off 0.06 over
the links made by 6×80 km (480 km) of stan-
dard single model fiber (SSMF) or large effec-
tive area fiber (LEAF). In SSMF and LEAF test-
cases, respectively, the proposed NN obtains sig-
nificant ≈ 2.5× and ≈ 10× drops in bit-error rate
(BER) when compared to the electronic disper-

sion compensation aided by a phase/amplitude
normalization. Moreover, when compared to NLE
based on the dynamic neural network[7],[11] with
2 layers and 192 neurons, a BER decline of ≈
2.5× and ≈ 5×, correspondingly, was obtained for
LEAF and SSMF. Finally, the proposed technique
was experimentally validated by applying it to a
31×200G channel WDM system employing a DP-
16QAM signal, transmitted over a 612 km SSMF
legacy link[12]. A≈5× BER drop has been demon-
strated on top of electronic dispersion compen-
sation combined with phase/amplitude normaliza-
tion only.
Neural Network Design
We start from the standard pass-averaged Man-
akov equation[13] describing the DP signal propa-
gation along the optical channel by:

∂uH/V (t, z)

∂z
+
jβ2

2

∂2uH/V (t, z)

∂t2
=

= j
8γ̃

9

[
|uH(t, z)|2 + |uV (t, z)|2

]
uH/V (t, z), (1)

where uH/V (t, z) are the normalized optical fields
of H and V polarization, respectively, β2 is the
group velocity dispersion (GVD) coefficient, γ̃

is the effective averaged nonlinearity coefficient,
that includes the effective length scale Leff =

(1− e−αL)/α emerging due to the averaging over
Ns periodic span loss and gains, with α being the
fiber loss coefficient, γ is the effective nonlinear
coefficient, L is the span length. In the case of no
GVD β2 = 0, the analytical solution of Eq. (1) writ-
ten in terms of the transmitted xk and received yk
symbols, can be expressed as[14]:
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Fig. 1: Structure of reveicer with the architecture of the proposed neural network.

We assume that Eq. (2), given the adaptive pa-
rameters are added, can describe the nonlinear
signal distortion remaining after the chromatic dis-
persion compensation (CDC) in the links with the
weak dispersive broadening. It leads us to the fol-
lowing model of nonlinear distortion:

x′Hk
= c1YHk

e[−c2|YHk
|2−c3|YVk

|2 +Θ1] + Ξ1,

x′Vk
= c4YVk

e[−c5|YHk
|2−c6|YVk

|2 +Θ2] + Ξ2,
(3)

where x′(V/H)k
is the k-th recovered trans-

mitted symbol, Y(V/H)k is a sequence of
the received soft symbols described as
[y(V/H)k−N

, ..., y(V/H)k , ..., y(V/H)k+N
], 2N + 1

is the sequence length, {c1, ..., c5} are complex-
valued parameter vectors with the same length
2N + 1, and Θ1/2 and Ξ1/2 are two nonlinear
functions that depend on the sequences YHk

and YVk
. The sequences Y(V/H)k account for the

complex GVD-induced memory in the nonlinear
interactions equalised by the adaptive filters
represented by the ck vectors. The nonlinear
functions Θ1/2 and Ξ1/2 mimic the inter-channel
Kerr nonlinearity and the transciever impairments.

The proposed NN topology, implementing the
nonlinear distortion model Eq. (3), is schemati-
cally depicted in Fig. 1. Since the complex-valued
symbols, weights and functions are used in our
approach, we design our NN as a complex-valued
one[15],[16]. We use non-conventional neuron acti-
vation functions -|x|2, ln(x) and ex to make the NN
resembling Eq. (3). Furthermore, we introduce Θ

and Ξ as three-layer perceptrons, since a multi-
layer perceptron is a universal nonlinear function
approximator[6]. The NN that learns Θ has three
layers with n1, n2, and n3 neurons, respectively,
in the first, second, and third layer. In the same

way, the NN representing Ξ has layers containing
n4, n5, and n6 neurons. All the neurons in both
Θ and Ξ NNs have the following complex-valued
activation function:

f(x = xr + jxi) =
e2xr − 1

e2xr + 1
+ j

e2xi − 1

e2xi + 1
. (4)

The NN is applied to the received soft-symbols
already pre-processed by the linear digital sig-
nal processing (DSP)[17] including full frequency-
domain CDC (see Fig. 1).

Tab. 1: Optimal neural network hyper-parameters
found via Bayesian optimisation.

Scenario N (taps) n1 n2 n3
n4 n5 n6

LEAF 480 km (numerical) 18 46 64 63
49 27 62

SSMF 480 km (numerical) 20 51 54 53
19 22 56

SSMF 612 km (experiment) 20 90 53 88
56 60 64

Since the optimal NLC input size and the func-
tions Θ and Ξ may change from case to case, we
implemented a Bayesian optimization (BO) algo-
rithm[18] to define in each scenario the best val-
ues for the following NN hyper-parameters: input
memory size N and neuron numbers n1, ..., n6.
A target parameter for BO was the best BER
reached by the NN during 5000 training itera-
tions. The NN itself was trained with the Adam
optimizer[19] minimising the mean-squared error
(MSE) between the predicted and actual transmit-
ted symbols with the learning rate 10−3, and batch
size 1000. Optimal configurations found for each
studied testcase, are listed in Table 1. Notably,
the NN training data (both simulated and experi-
mental ones) was randomly shuffled before every
training iteration to eliminate possible dataset pe-
riodicity and avoid the risk of NN overfitting[20].
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Fig. 2: Numerical test for 6×80 km LEAF
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Fig. 3: Numerical test for 6×80 km SSMF
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Fig. 4: Field trial for 612 km SSMF

Results and Discussion

Fistly, we numerically considered the transmis-
sion of DP-64QAM symbols shaped by an RRC
with roll-off 0.06 over the metro coherent link con-
sisting of 6×80 km LEAF or SSMF spans. The
fiber loss, dispersion and effective nonlinear co-
efficients used were, respectively, for LEAF: α
= 0.225 dB/km, D = 4.2 ps/(nm·km), γ = 1.3
W−1km−1 and, for SSMF, α = 0.21 dB/km, D =

16.8 ps/(nm·km), γ = 1.14 W−1km−1. Every span
was followed by an ideal lumped optical ampli-
fier (OA) fully compensating for the losses on the
fiber span and injecting the additive white Gaus-
sian noise (AWGN) with noise figure NF = 4.5 dB.
The transmission was simulated by the split-step
Fourier method[14]. The proposed NN was bench-
marked in the role of NLC in the receiver-based
DSP (see Fig. 1) against the dynamic neural net-
work (DNN), suggested for NLC in[11], and the
classic DBP[21]. To ensure a fair comparison, the
employed DNN had two layers with 192 neurons
each, as in[7], the same length of input symbol
sequences as our NN, and operated on the sym-
bols sequences from both polarizations YHk

, YHk
,

as in[22]. The DBP operated on 2 samples/symbol
signal with 2 steps per span (StPS).

Fig. 2 and Fig. 3 show the results obtained by
the considered NLC strategies in the simulated
LEAF and SSMF based transmission systems, re-
spectively. For LEAF testcase, the proposed NN
reduced the BER by up to ≈10× when compared
with CDC followed by a least-squares amplitude-
phase shift (Norm) and up to ≈ 5× when com-
pared with a two layer DNN. The proposed NN
also overcame the DBP 2 StPS performance. Ad-
ditionally, the optimum launch power increased
from about 0 dBm to about 3 dBm when using
the proposed NN instead of CDC + norm. For
the SSMF system, we have observed a reduc-
tion of the BER of up to ≈ 2.5× when using the
proposed NN with respect to both the CDC plus
Norm. The DNN produced negligible BER im-

provement in this case.
The experimental setup used for the field trial

is described in[12]. The transmission link consists
of multiple pairs of G.652 SSMF deployed be-
tween Torino and Chivasso in Italy, leading to a
total length of 612 km. The transmitted spectrum
consists of the channel under test surrounded by
15×200G 16QAM neighbor channels from both
the right- and left-hand sides, resulting in a 31
WDM transmission system in the 37.5 GHz grid
(33.01 GBaud). Fig. 4 shows the NLC perfor-
mance obtained in the field trial by the proposed
NN and the DNN. The optimal launch power in-
creased from 3 to 4 dBm and the BER fell off by
up to ≈ 5× and ≈ 3× when compared with the
CDC plus Norm and the DNN approaches, re-
spectively. Moreover, in the experimental study,
the NN led to a BER improvement in the linear
regime too. This result highlights the ability of the
suggested NN to mitigate the impact of not only
the Kerr nonlinearity, but also of the additional lim-
itations such as, e.g., the impact of narrow trans-
mitter bandwidth, low-resolution digital-to-analog
converters, and imperfections of the driver ampli-
fier and the dual polarization Mach-Zehnder mod-
ulator.
Conclusions
We investigated the NLC performance of the
suggested complex-valued artificial NN consider-
ing different fiber systems and compared it with
the dynamic multi-layer neural network. Our re-
sults demonstrated that the proposed NN leads
to significant system performance improvement
when considering both simulated and experimen-
tal data. Furthermore, the NN was shown being
able to compensate not only channel nonlineari-
ties, but transceiver distortions too.
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