
A Novel Approach to Coupled-Mode Analysis of Geometric 
Deformations in Reciprocal Waveguides  

Gianluca Guerra(1, *), Seyed M. Abokhamis Mousavi(2), Austin Taranta(2), Eric Numkam Fokoua(2),  
Marco Santagiustina(1), Andrea Galtarossa(1), Francesco Poletti(2), Luca Palmieri(1) 

 
(1) Department of Information Engineering, University of Padova, Padova, IT 
(2) Optoelectronics Research Centre, University of Southampton, Highfield Campus, Southampton, UK 
(*) gianluca.guerra@phd.unipd.it 

Abstract We present an approach to treat geometric perturbations in coupled-mode analysis for 
reciprocal waveguides. Geometric perturbations are converted into material ones and a coupled-mode 
theory for material perturbations is used to assess the propagation. The method is tested on an 
elliptically deformed antiresonant fiber. 

Introduction 
Optical waveguides are designed to guide 

light with precise properties. However,  
imperfections introduced from manufacturing or 
their deployment conditions induce perturbations 
that may impair their behavior. Assessing how 
these perturbations affect the propagation is thus 
of paramount importance for real applications. 

In this context, coupled-mode theory (CMT)[1] 
is a valuable tool to determine the optical 
properties of real waveguides. It describes light 
propagation by using the modes of an 
unperturbed, reference waveguide, which are 
readily available from the design phase. Since 
these modes are not exact solutions in the real 
waveguide, their amplitudes are coupled in the 
propagation. 

So far, many CMTs have been presented in 
the literature, encompassing a variety of 
approaches and formulas.[2]-[4] Choosing the right 
one is not an easy task and depends on the 
waveguide, the nature of the modes, and the 
perturbations.  

In general, perturbations can be classified as 
material or geometric. Material perturbations 
change the constitutive tensors of the waveguide 
without affecting the geometry, whereas, 
geometric perturbations deform the waveguide’s 
structure. This distinction splits CMTs into two 
separate categories, corresponding to the type of 
the perturbation they aim to tackle. The reason 
involves the distinctive behavior of geometric 
deformations, which shift the boundary of 
adjacent materials, misaligning the wave in the 
waveguide with the modes of the reference that 
are used for its approximation. This critical 
problem requires dedicated CMT formulations to 
handle geometric deformations accurately, 
especially for high-index contrast 
waveguides.[5],[6] 

CMTs for material perturbations and those for 
geometric ones, in general, are not 

interchangeable, so the appropriate CMT must 
be chosen depending on the perturbation type. 
Unfortunately, real perturbations are neither only 
electromagnetic nor only geometric but a mixture 
of both. Therefore, these case can only be 
analyzed by resorting to finite-element method 
(FEM) analysis. Although FEM is a great tool for 
designing waveguides, it is not well suited to 
assess the effects of perturbations since it 
requires that the entire wave be computed anew 
for each waveguide variation. 

Here, we present a novel approach to the 
coupled-mode analysis of reciprocal waveguides 
affected by geometric and material perturbations. 
Geometric perturbations are first converted into 
material ones by using the theory of 
transformation optics (TO). [7],[8] Then, a newly-
developed, general CMT for material 
perturbations is applied to study propagation. 
This approach has the advantage of putting 
geometric and material perturbations on the 
same footing, enabling a unified coupled-mode 
theory for treating both geometric and material 
perturbations simultaneously. Moreover, our 
method can be used for any kind of reciprocal 
waveguides, for both guided and leaky modes, 
including micro-structured,[9] solid-core and 
antiresonant fibers,[10] as well as high-contrast 
integrated waveguides.[11]  

Results 
We consider a waveguide affected by material 

and geometric perturbations, with permittivity and 
permeability tensors  and , where 

 is the coordinate vector in a Cartesian 
reference frame . To study the 
waveguide’s  optical properties, we first define an 
equivalent waveguide in which the geometric 
perturbation is converted into a material one. This 
is obtained by applying a proper change of 
coordinates defined by . Accordingly, 
the transformed space has coordinate vector 

 in the Cartesian reference frame 



. This transformation is carefully 
selected so that the equivalent waveguide and 
the reference one share the same boundaries. 
Owing to TO, for the electromagnetic wave 
before and after the transformation to be 
invariant, the equivalent waveguide must have 
constitutive tensors,  and , given by[8] 

 , (1) 

 , (2) 

where  is the Jacobian matrix of . In fact, TO 
converts geometric deformations into anisotropic 
changes of the material. Remarkably, note that  
and  may also include any material perturbation 
possibly present in the original waveguide. 
Moreover, if the waveguide is not affected by 
geometric deformations, i.e.,  is the identity 
function, then  and ; thus, the 
equivalent waveguide retains the initial 
perturbation on the material.  

Once the equivalent waveguide is defined, 
CMT is used to assess its behavior. 
Nevertheless, classic CMTs consider only 
perturbations on the permittivity of the material; 
thus, they cannot be used in this case because 
both the dielectric permittivity and magnetic 
permeability tensors are perturbed. Here, we 
present a general CMT for reciprocal waveguides 
able to deal with perturbations on both tensors. 
As the derivation of this theory is lengthy, details 
will be reported elsewhere; in this work, we report 
the main results. 

The electromagnetic wave in the equivalent 
waveguide is described by a combination of the 
modes of the reference one, according to the 
coupled-mode equation of propagation. This 
differential equation reads 
 

 (3) 

where  are the amplitudes of the modes;  is 
the diagonal matrix of the modes’ propagation 
constants;  is the orthogonality matrix, whose 
elements are the mode orthogonality coefficients; 
and  and  are the coupling matrices,  
whose elements are the mode coupling 
coefficients.  and  represent the local 
mode coupling due to perturbation on the 
permittivity and permeability tensor, respectively. 
Here, both contributions are crucial to describe 
the correct behavior of the waveguide.  

The coupling coefficients in  are denoted as 
 and describe the interactions that occur 

between the generic modes  and , where 
the superscripts,  and  indicate the mode’s 
direction of propagation—both forward and 
backward propagating modes are considered in 

the analysis. The expression of the coefficients is 

 (4) 

where the integral is over the waveguide’s cross-
section;  is the angular frequency;  is the 
electric field of the indicated mode; 

, with  the identity matrix, is a  matrix 
that depends on the permittivity tensor  of the 
reference waveguide; and  is a  matrix 
that depends on the difference between the 
equivalent waveguide and the reference one, 

 

(5) 
   

   

In the above expressions, , , , , and 
the equivalent ones for the reference waveguides 
are  matrices where the only non-zero 
elements are indicated in the subscripts;[3]  
and  are scalars that indicate the element in 
position (3,3) of  and , respectively. Regarding 
the coupling coefficients of , analogous 
expressions hold once  is replaced with the 
magnetic field ,  is replaced with ,  with the 
reference waveguide’s permeability tensor , and 

 with  
The orthogonality coefficients in  read 

 (6) 

where  is the unit vector in the longitudinal 
direction. In reciprocal waveguides, these 
coefficients are non-zero only if  and 

, where  indicates the counter-propagating 
direction of . Remarkably, this orthogonal 
relation holds for any kind of mode, including 
guided, leaky, and radiation ones.  

Case study 
The presented method is used to analyze the 
propagation in a circular 2-layer antiresonant 
hollow-core fiber[10] (i.e., a capillary fiber made of 
concentric rings) affected by ellipticity. In this 
preliminary application, we keep the ellipticity 
fixed along the longitudinal direction. 

The unperturbed, reference fiber is isotropic, 
with  and dielectric profile  (see Tab. 1). 
Being hollow-core, the propagation is described 
by leaky modes.[12] Thus, a perfectly matched 
layer (PML) is used to compute the modes of the 
fiber with a FEM solver (i.e., COMSOL®).  

The deformation which shifts the fiber’s 
structure from circular to elliptical is described by 



the parameter , defined as the relative maximum 
radius variation with respect to the circular shape. 
The elliptical fiber is considered with its major 
axis aligned with , in the Cartesian reference 
frame , where  points to the 
longitudinal direction. Accordingly, the 
coordinates change  that recovers the fiber’s 
roundness is , , 
and  Resorting to Eqs. (1) and (2), the 
constitutive tensors of the equivalent fiber are 

 and , where 
, with , 
, and . 

Once the equivalent fiber has been defined, 
the propagation in the elliptical one is described 
by the coupled-mode equation of Eq. (3). Since 
ellipticity is fixed along the fiber, the coupling 
matrices  and  are constants. Then, the 
solutions of the coupled-mode equation are easy 
to find and they correspond to the eigenmodes of 
the elliptical waveguide.  

To evaluate the soundness of our approach, 
the obtained eigenmodes are compared with 
those computed with COMSOL® from the original 
elliptical waveguide, which are used as a 
benchmark. Furthermore, we also compare our 
method with the standard CMT for leaky 
modes,[13] with the perturbation on the dielectric 
profile given by the difference between the profile 
of the elliptical fiber and the one of the reference. 
For both, the results are obtained by using the  
100 lowest loss modes of the reference fiber.  

Fig.1 shows the real part of the effective 
refractive index and the loss of the six lowest loss 
eigenmodes of the elliptical fiber at different 
values of . Solid blue lines represent the results 
obtained with the method presented in this paper; 
dashed red lines indicate those obtained with the 
standard CMT; and the black cross marks are the 
benchmark values. Results show that our 
approach performs consistently better than the 
standard CMT, which completely fails for high 
ellipticity values. The reason is that standard 
CMT does not account for the boundary shifts 
induced by the ellipticity. The issue is likely to be 
aggravated by the fact that leaky modes are in 
general not well confined in the core. When 
compared with the benchmark values, our results 
are in very good agreement, especially for the 

real part of the effective refractive index. 
Concerning the losses, results follow the 
benchmark until , beyond which they 
worsen. We believe, however, that this is not a 
limitation of the theory, but rather an effect of the 
limited number of modes used in the analysis. 

Conclusions 
In this work we have presented a novel approach  
based on the coupled-mode analysis to study 
propagation in reciprocal waveguides affected by 
geometric and material perturbations. The 
method paves the way for a unified CMT able to 
treat geometric and material perturbation in the 
same framework. To prove its soundness, we 
tested our approach on a 2-layer antiresonant 
fiber affected by ellipticity. Results show that the 
method performs better than the standard CMT 
and very close to the reference values.  
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Tab. 1: Concentric rings of the 2-layer antiresonant fiber 
 

 Radii  Refractive 
Index  left right 

Hollow-core 0   
1st antiresonant layer    
2nd antiresonant layer    
Cladding    
PML    

 
 

Fig. 1: Effective refractive index and losses of the six lowest loss 
eigenmodes of the elliptical fiber.  
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