
Demonstration of Federated Learning over  
Edge-Computing Enabled Metro Optical Networks 
B. Shariati*, P. Safari*, A. Mitrovska, N. Hashemi, J. K. Fischer, and R. Freund  

Fraunhofer Institute for Telecommunications Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin, 
Germany, behnam.shariati@hhi.fraunhofer.de 

Abstract: We demonstrate the benefits of a federated learning framework for (re)training of global ML 
models over geo-distributed data sources. The demonstration is carried out on a live edge computing 
enabled optical networking test-bed.  

Introduction 
Machine Learning (ML) has recently received a 
significant attention from every business, which 
somehow deals with data. One of the very 
consequences is the massive amount of data that 
is collected and stored in numerous sites from 
which the businesses would like to explore 
insights or train sophisticated ML solutions to 
improve their product portfolios. In the cloud 
computing centred paradigm, the main approach 
has been to move all data to a central location 
where there is sufficient computing and storage 
resources to perform the ML model training. 
However, due to the risk of unauthorized use, 
which may compromise the privacy of potential 
customers or put businesses in danger due to the 
disclosure of confidential information, there is a 
strong tendency to avoid transporting the data 
across the telecom infrastructure. Instead, 
solutions are devised to perform any data 
exploration or ML training in a distributed fashion 
at the locations where the data originates. This 
approach not only addresses the previously 
mentioned concerns, it can significantly reduce 
the required bandwidth for data transport over the 
telecom infrastructure between data sources and 
cloud computing infrastructures. 
Privacy-Preserving Machine Learning (PPML) 
allows the training of a ML model over privacy-
sensitive data by assuring the data owners that 
their privacy will not be compromised[1]. They 
have been studied in different applications such 
as Google Keyboard[2], Apple’s QuickType[3], 
medical screening[4], and disease outbreak 
discovery[5]. 
Moreover, many modern ML algorithms are data 
hungry. These data are usually not gathered in a 
single location and the mobility of the data is 
constrained due to privacy concerns, network 
bandwidth limitations, and resource availability[6]. 
These issues result in the development of  
artificial intelligence (AI) on the network edge 
towards the use of locally hosted data in order to 
perform model training and contribute to a better 
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global model with partially improved models 
trained on different remote local sites[7]. These 
developments together with the use of recently 
proposed federated aggregation[8] mechanisms 
can be exploited to use huge amounts of data 
generated on different devices, which do not 
necessarily belong to a single owner and are 
managed by different entities for the realization of 
ML solutions beneficial for all the 
consumers[9][10][11][12]. 
We have developed a federated learning 
framework, which allows training of ML models 
over geo-distributed datasets. The framework is 
developed over PyTorch[13], but can be used to 
train and validate models based on the 
TensorFlow[14] library as well. The framework 
operates in a modular fashion, which allows 
different downstream tasks (e.g., image 
recognition, QoT estimation, etc.) to be plugged-
in to the framework. The framework is interfaced 
with a customized performance monitoring 
dashboard based on Grafana[15], which provides 
real-time monitoring of traffic flows among 
different modules of the framework and of the 
available resources on the distributed sites. 
In this demonstration, we perform real-time 
training of a QoT classifier by exploiting data of 
three different Domain Managers (DM), 
representing a multi-vendor ecosystem, without 
sharing any data with the Network Management 
System (NMS) in order to avoid transporting any 
data to a central location and to protect the 
privacy of different vendors while offering their 
knowledge to train a global ML model.  

Benefits of the Federated Learning 
Framework for Optical Networks  
Optical networks are transforming towards fully 
autonomous entities and ML is expected to play 
a significant role[16]. In this transformation phase, 
there are many technical and regulatory issues to 
be addressed paving the way for the realization 
of such solutions and, ultimately, their 
commercialization and deployment. 
Currently, unavailability of real field-collected 



data is one of the main showstoppers in the 
development of reliable ML-based solutions. 
While one of the reasons is the immaturity of 
monitoring solutions to acquire and process the 
networking data, a more critical bottleneck 
emerges due to regulatory issues concerning 
data sharing among different players (i.e., 
telecom operators and vendors). In essence, the 
telecom operators have control over the data, 
generated from the activity of their networking 
infrastructure, and usually tend not to share it with 
third parties due to conflicts of interest and 
confidentiality of the operation of their 
infrastructure. However, such data is crucial to 
develop reliable ML-based solutions. Therefore, 
it is of great value to develop a solution that 
enables exploitation of such data, for the purpose 
of training and validation of ML-based algorithms, 
without sharing the original data with others.  
Our federated learning framework targets exactly 
that challenge and allows shared ownership and 
governance of ML models in optical networks, 
which is the key enabler for the realization of ML-
based solutions that can work in real-field 
scenarios in a robust and reliable way. 

Federated Learning Framework Architecture 
The Federated Learning (FL) framework[17][18] 

trains a global model using data hosted on a set 
of geo-distributed nodes. These nodes are 
assumed to have computing resources to 
contribute to the training. We use the term Edge 
Contributor Node (ECN) to refer to those edge 
nodes. FL mainly relies on the concept of “bring 
code to the data” rather than “data to the code.” 
FL i) reduces the amount of transported data 
significantly, ii) accounts for model inaccuracies 
by adapting the ML models using local data, and 

iii) relaxes the constraint of having high-
performance computing units in a centralized 
location. The overall training procedure is 
orchestrated by the Training Coordinator Node 
(TCN). In order for the TCN and ECNs to 
communicate, a secure communication protocol 
based on WebSocketSecure (WSS) is 
adopted[19]. 
In order to realize a FL architecture, we use the 
well-known Stochastic Gradient Descent (SGD) 
algorithm[7][8]. In our implementation of so called 
Federated SGD, each ECN k computes the 
average gradient on its local data at the current 
model , and the TCN is responsible for 
gradient aggregation via  
and then updates the glogal model parameters. 
This mechanism is called Federated Averaging.  

Performance Monitoring Dashboard 
We have developed a performance monitoring 
dashboard based on Grafana[15] and interfaced it 
to our FL framework. The dashboard provides 
real-time monitoring of the usage of 
computational resources (i.e., CPU, Memory, 
GPU, and filesystem) for each one of the nodes 
during the training procedure. In addition, the 
monitoring dashboard allows real-time 
monitoring of traffic flows among the nodes 
during the training. The developed dashboard 
relies on Prometheus as data source and 
cAdvisor as metrics exporter for providing real-
time statistics reporting. 

Demo Architecture 
The networking architecture envisioned for this 
demonstration is illustrated in Fig. 1. The metro 
optical network is composed of three commercial 
2-degree reconfigurable optical add-drop 
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Fig. 1: The 3-node microROADM metro network test-bed used for the demonstration. Each metro node hosts a computing 
platform, two of them being NVIDIA DGX-1 AI acceleration units. The live traffic exchanges among the three node over three 
100G lightpaths shown in blue, red, and green. Each computing node hosts the TED of a particular vendor to which the ECNs 
have access. The TCN, which moderates the whole training, is hosted on one VM of one of the edge nodes. 



multiplexers (ROADM)[20] connected to each 
other in a ring topology. We consider 20 km of 
standard single mode fibre (SSMF) to 
interconnect each two ROADMs. Each ROADM 
is connected to a commercial optical transponder 
card[21], which provides two wavelength 
channels. We use each transponder to establish 
two distinct 100G connections, as shown with 
different colours in the figure. On the client side, 
we have two 100G interfaces connected to a L2 
switch and, from there, to the edge compute 
nodes. Two of the compute nodes are NVIDIA 
DGX-1 platforms[22], which host 8 Tesla V100 
Graphic Processing Units (GPU) and are used for 
acceleration of model training. 
In terms of software stack, both DGX-1 platforms 
run a Linux 18.04.2 LTS over which the NVIDIA 
Container Runtime is running to execute Docker 
containers. On the GPU-less edge node, we run 
a bare metal Linux 18.04 LTS over which we host 
two virtual machines (VM): one dedicated to run 
an ECN and one to run the TCN over a Docker 
engine. The framework runs in a containerized 
fashion as a set of micro-services, which are 
deployed on each dedicated machine. 

Demonstration Workflow 
In order to show the benefits of our proposed 
federated learning framework, we showcase a 
use-case of Quality of Transmission (QoT) 
estimation in the context of network data sharing 
based on mutual trust for network automation. In 
this regard, we consider that each edge node 
hosts the Domain Manager (DM) (see Fig.2b) of 
a corresponding vendor with a dedicated Traffic 
Engineering Database (TED) of the domain.The 
demonstration will showcase a distributed 
version of training a QoT classifier using datasets 
that are hosted on three different machines.  
The demonstration is initiated by a supervisor. In 

the first step, the Docker containers, which 
include the framework and all its dependencies, 
will be deployed on the machines. Once the 
images are deployed, the micro-services start. At 
this stage, the TCN performs handshake with all 
the ECNs to establish the WSS connection. 
When the connection is established, the TCN will 
query the eligibility of the ECNs. The ECNs will 
respond whether they have an available dataset, 
computation power, and willingness to contribute 
to the training. Once the TCN receives all the 
responses from the ECNs, it distributes the 
training configuration to all the ECNs and the 
training on the ECNs starts. When the local 
training is completed, each ECN returns the 
updated model parameters and the TCN 
proceeds to perform Federated Averaging to 
obtain the global model. The training will continue 
until the global model achieves a certain 
accuracy, which is measured during the 
validation procedure. Otherwise, it stops when 
the maximum number of training rounds set by 
the TCN is reached. The performance monitoring 
dashboard reports all the interactions and 
resource usage during the training procedure. 

Conclusions 
This demonstration shows the possibility of 
training a global ML model over a set of datasets 
that are located on different machines, interfaced 
with GPU-enabled AI acceleration units, and 
interconnected with three nodes in a metro 
optical networking test-bed that carries live traffic. 

Acknowledgment 
This work has been partially developed in the 
project OTB-5G+ funded by the German ministry 
of education and research (BMBF) (reference 
number: 16KIS0979K)   

 
Fig. 2: (a) Training workflow of the federated learning framework considering three ECNs. (b) Illustration of a multi-vendor 

ecosystem considered for use-case demonstration over the framework. 

Domain A

Domain C

Domain B

Domain Manager A

Domain Manager B

Domain Manager C

Databases

ML Models

Vendor C

Vendor B

Vendor A

NMS

ECN

ECN

ECN

TCN

(a)

(b)

TCN ECN
alice

ECN
bob

ECN
charlie

cAdvisor

in
iti

al
iz

at
io

n 
sc

he
du

lin
g

  return updated ML model

  return updated ML model

m
od

el
 a

gg
re

ga
tio

n

pull metrics

promQL

Docker image deployment

tra
in

in
gtra

in
in

g

tra
in

in
g

TCN: Training Contributor Node, ECN: Edge Contributor Node, WSS: Web Socket Secure

cAdvisor

pull metrics

LLpromQL

Performance Monitoring DashboardFederated Learning Framework

metrics retrival

metrics retrieval

metrics retrieval

metrics retrieval

TCN ECN
alice

ECN
bob

ECN
charlie

in
iti

al
iz

at
io

n
sc

he
du

lin
g

preturn updated ML model

 preturn updated ML model

m
od

el
 a

gg
re

ga
tio

n

ttDocker image deployment

tra
in

in
ggtra

in
in

gg
n

g
tra

in
in

gg

metrics retrival

metrics retrieval

metrics retrieva

met



References 
[1] K. Bonawitz et al., “Practical Secure Aggregation for 

Privacy-Preserving Machine Learning”, in 
Proceedings of the 2017 ACM SIGSAC Conference on 
Computer and Communications Security, 2017. 

[2] T. Yang et al. “Applied federated learning: Improving 
google keyboard query suggestions,” arXiv preprint 
arXiv:1812.02903, 2018.  

[3] ADP Team et al. “Learning with privacy at scale,” 
Apple Machine Learning Journal, 1(8), 2017. 

[4] J. Paparrizos, et al., “Screening for pancreatic 
adenocarcinoma using signals from web search logs: 
Feasibility study and results,” Journal of Oncology 
Practice, 12(8):737–744, 2016.  

[5] V. Lampos, Andrew C Miller, Steve Crossan, and 
Christian Stefansen. Advances in nowcasting 
influenza-like illness rates using search query logs. 
Scientific reports, 5:12760, 2015. 

[6] H. Wang, et al., “Federated learning with matched 
averaging,” In International Conference on Learning 
Representations, 2020. 

[7] K. Bonawitz et al, “Towards Federated Learning at 
Scale: System Design”, in arXiv preprint 
arXiv:1902.01046. 

[8] H. B. McMahan, et al., “Communication-Efficient 
Learning of Deep Networks from Decentralized Data”, 
in Proceedings of the 20th International Conference on 
Artificial Intelligence and Statistics (AISTATS), 2017.” 

[9] T. Li, et al., “Federated learning: Challenges, methods, 
and future directions,” arXiv preprint 
arXiv:1908.07873, 2019. 9.  

[10] V. Smith, et al., “Federated multi-task learning,” In 
Advances in Neural Information Processing Systems, 
pp. 4424–4434, 2017.  

[11] S. Caldas, et al., “A benchmark for federated settings,” 
arXiv preprint arXiv:1812.01097, 2018.  

[12] P. Kairouz, et al., “Advances and open problems in 
federated learning,” arXiv preprint arXiv:1912.04977, 
2019. 

[13] https://pytorch.org/ [accessed in Aug 2020] 

[14] https://www.tensorflow.org/ [accessed in Aug 2020] 

[15] https://grafana.com/ [accessed in Aug 2020] 

[16] L. Velasco, B. Shariati, F. Boitier, P. Layec, and M. 
Ruiz, “Learning life cycle to speed up autonomic 
optical transmission and networking adoption,” 
IEEE/OSA JOCN, vol. 11, pp. 226-237, 2019. 

[17] B. Shariati, P. Safari, and J. K. Fischer, “Applications 
of distributed learning for optical communication 
networks,” presented at OSA APC, Montreal, Canada, 
Jul 2020. 

[18] P. Safari, B. Shariati, and J. K. Fischer, “Privacy-
preserving distributed learning framework for 6G 
telecom ecosystems,” arXiv:2008.07225, Aug 2020. 

[19] [RFC 6455] The WebSocket Protocol. 

[20] ADVA FSP3000 Open Line System with 
microROADMs (https://www.adva.com/) [accessed in 
Aug 2020] 

[21] ADVA Quadflex Transponder 
(https://www.adva.com/) [accessed in Aug 2020] 

[22] NVIDIA DGX-1 Deep Learning Platform 
(https://www.nvidia.com/en-us/data-center/dgx-1/) 

[accessed in Aug 2020] 


