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Abstract Recent results on analytical modeling of non-linear interference due to signal propagation in 
multi-span optical systems are reviewed, including high-symbol rate and ultra-wideband scenarios. 
Latest advances in nonlinearity mitigation, based on the use of machine learning techniques and non-
linearity tolerant modulation formats, are also discussed. 

Introduction 

The nonlinear interference (NLI) noise generated 
by the nonlinear interaction between different 
WDM channels is a major limiting factor to the 
capacity of long-haul coherent optical systems. 
As transmission power is increased, the 
nonlinear Kerr effect degrades the system 
performance, preventing operation at the 
transmission rates that would be achieved in a 
linear system[1], as shown in Fig. 1.  

This performance limitation motivated the 
development of several nonlinear compensation 
techniques, as well as of analytical models for 
signal propagation in an optical fiber. These 
models, which have become widespread in 
recent years, are useful tools for both the 
performance prediction of coherent optical 
systems and the design of efficient NLI mitigation 
algorithms. 

In this paper, we briefly review the most 
commonly used methods and the recent 
advancements in modeling and mitigation of 
nonlinear effects in uncompensated coherent 
optical transmission systems. 

Modeling of Non-Linear Interference 

The majority of the models that predict the 
performance degradation in optical fiber 
communications due to Kerr nonlinearity solve 
the nonlinear Schrödinger equation analytically 
using a first-order perturbation approach[2]. 
Among them, those based on the “GN-model” 
approach[1] have become quite popular, thanks to 
a good balance between accuracy, complexity 
and ease of use. Their simplicity, with respect to 
other models, derives from the assumption that, 
in highly dispersive channels such as 
uncompensated long-haul coherent systems, 
each WDM signal can be treated as Gaussian 
noise.  

However, it has been pointed out that the 
dispersed signal is only first-order Gaussian, 
whereas multiple samples of the signal do not 
have a jointly Gaussian distribution[3]. The fact 
that the GN model neglects this aspect leads to 
several limitations, among which the inability to 
resolve the format-dependent NLI generation.  

Removing the Gaussian assumption requires 
taking into account not only the 2nd moment of the 
launched signal, but also higher order moments. 
In this way, the models of nonlinear propagation 
become more complex in terms of computational 
effort, but the accuracy is increased. In particular, 
a detailed modelling of all the NLI components is 
obtained, including short-correlated quasi-
circular noise and long-correlated nonlinear 
phase noise (NLPN) and polarization noise[3,4]. 

The enhanced-GN model (or EGN model[4]) is a 
complete and accurate model in the frequency 
domain, computationally very complex. A 
reduced version exists, which is quite accurate 
and 1/3 as complex, but complexity is still high[2]. 
In addition, in its current form it does not permit 
to separate out nonlinear phase and polarization 
rotation noises (PPRN) from circular NLI, though 
it does permit to approximately factor out NLPN. 
In fact,  it  has  been  shown  that,  if  all  the  long- 

 

Fig. 1: Mutual information vs. transmitted power per channel 
over 20 spans of SSMF (span length = 85 km), assuming the 
transmission of different modulation formats occupying the 
entire C-band [1]. The black dashed line is the conventional 
Shannon limit in additive white-Gaussian noise. 



correlated phase noise is ideally taken out, then 
any PM-QAM system is well described by  the 
EGN model calculated as if PM-QPSK was 
transmitted [5,6]. A simplified, yet less accurate, 
form of the GN model (the IGN model[1]) can be 
obtained assuming an incoherent combination of 
the NLI components generated in each span 
during propagation, i.e. assuming that that NLI 
adds up in power at the end of the link. 

The time-domain models described in[7,8] are very 
similar to the EGN model in terms of accuracy 
and complexity when predicting NLI variance. In 
addition, they are also able to predict PPRN and 
temporal correlations. They describe nonlinear 
interference as an inter-symbol interference (ISI), 
and predict the contribution of the various ISI 
terms, which can be used to examine and 
evaluate the performance of various ISI 
cancellation techniques.  

Spatially-resolved models[9,10] are an alternative 
description of the EGN model, which predict 
temporal correlations of the optical nonlinear 
interference and focus on nonlinear spatial 
interactions along the link, such as nonlinear 
signal–noise interaction. Their complexity grows 
with the system length. 

Lately, strong industry innovative trends have 
developed towards a quick-paced uptake of 
Gaussian-shaped constellations and a swift 
increase in symbol rates, with rates up to 128 
Gbaud and beyond foreseen in the short-medium 
term. The EGN model appears to be extremely 
reliable, across all the explored parameter space, 
as shown in[6,11]. It handles all formats, QAM and 
Gaussian constellations, spacing values and 
symbol rates from 8 to 512 Gbaud, within a very 
small error bracket vs. simulations, as shown in 
Fig. 2. Remarkably, for Gaussian-shaped 
constellations, the EGN model coincides with the 
much computationally simpler GN model. 

The GN model has been recently extended to 
take into account the impact of inter-channel 
stimulated Raman scattering (ISRS) on the 
optical Kerr nonlinearity[12,13], enabling an 
accurate modeling of nonlinear propagation in 
wideband optical systems that occupy the entire  
C+L band (approximately 10 THz) or beyond. 

In order to reduce the computational complexity 
of NLI models and make them real-time, Closed-
Form Model (CFM) approximations of the 
GN/EGN models have been proposed[14,15] 
capable of assessing whole links in fractions of a 
second. These models were originally derived 
from a closed-form incoherent GN model 
approximation proposed in[1], which was then 
extended to take into account the frequency-
dependence of both loss and dispersion, and the 
impact of  ISRS[15,17]. They were also augmented 
with various correction terms to improve their 
accuracy and bring it to EGN-model level[15,16], 
also using machine-learning techniques[15].  

As an example, Fig.3 shows the high degree of 
accuracy reached by some of these CFMs, vs. 
the EGN model. In particular, the green 

 
Fig. 3: Histograms of the SNR estimation error between a 
real-time CFM and the EGN model, tested over 2800 
randomized C-band WDM systems, of which 2050 are fully-
loaded and 750 are partially loaded. The systems had highly 
diversified channel formats, symbol rates, spacings, fibers, 
as well as other parameters[15]. Red histogram: CFM1 from[15]. 
Green histogram: CFM4 from[15] with ML enhancement and 
analytical “coherence term”. 

Fig. 2: System maximum reach in number of spans vs. net 
spectral efficiency. (a) QAM constellations. (b): Gaussian 
constellations. Asterisks: simulation results. Lines: 
predictions using the GN, EGN and incoherent GN-model. 
System data: span length 100km, EDFA noise figure 6dB, 
rate =64GBaud, 15 channels. Channel spacings  76.2, 
87.5 and 100 GHz. For each format the target GMI (for PM-
QAM) or MI (for PM-Gaussian) is shown.  



histogram is related to the so-called CFM4 which 
uses a simple machine-learning based correction 
term[15]. When tested over 2800 full C-band 
systems the error is very small. The most current 
versions of these CFMs[15-17] are capable of 
delivering near-EGN-model accuracy over C+L 
band systems, with ISRS taken into account[17].  

NLI Mitigation Techniques 

The NLI analytical models are useful tools to 
obtain an accurate prediction of the ultimate 
performance achievable by the various mitigation 
techniques[1,18]. However, the actual performance 
gain will also depend on several implementation 
issues that cannot be easily included in the 
analytical estimations, such as the sub-optimum 
performance of low-complexity compensation 
algorithms[19] or the higher impact of NLPN in 
digital multi-subcarrier systems[20], which would 
prevent a full exploitation of the NLI mitigation 
benefits and need to be addressed separately.    

Several techniques have been proposed to 
reduce the power of the NLI noise[18,21]. The 
effectiveness of nonlinearity mitigation depends 
on the nature of the NLI, which can be divided 
into two main classes: in-band interference, 
which includes the NLI generated within the 
electronic bandwidth of the transceiver, and out-
of-band interference, which includes the NLI 
generated by the interaction with WDM channels 
that are note accessible to transmitter and 
receiver. An ideal NLI mitigation technique 
should effectively compensate the nonlinearity 
using the lowest computational effort possible. 

Digital backpropagation (DBP) is among the best 
solutions, in terms of accuracy, to remove fiber 
nonlinearity[22]. It is based on a numerical 
approximation of the nonlinear Schrödinger 
equation (NLSE) solution using the split step 
Fourier method (SSFM). The performance of 
DBP improves with the number of steps per span 
used in the SSFM. In order to achieve good 
performance, multiple steps per span are 
necessary, which come at the cost of additional 
complexity for the extra digital circuits needed to 
implement of the Fourier transforms. The filtered 
DBP (FDBP) [23] is an approach that can be used 
to reduce the number of steps per span. It is 
based on the application of an additional filtering 
operation to the intensity signal at each nonlinear 
step in order to limit the over-compensation of the 
non-linearity. An alternative approach to mitigate 
in-band fiber nonlinearities, with a similar 
complexity as standard DBP, is based on the use 
of Volterra series transfer functions[24]. However, 
Volterra series approaches suffer from a severe 

performance penalty when the computational 
complexity is reduced[25]. 

Out-of-band NLI generated solely by out-of-band 
channels is typically treated as non-removable 
noise, while out-of-band NLI that involves the 
channel under test can be modelled as time-
varying ISI and can be partially mitigated using 
several techniques (such as MAP or ML 
decoding)[26].  Mitigation of the impact of NLI can 
be also obtained using different approaches that 
optimize one or more transmission parameters, 
among which: symbol-rate optimization (SRO)[27], 
dispersion pre-compensation[28] and constellation 
or pulse shaping[29]. 

Very recently, several NLI mitigation methods 
based on machine-learning (ML) approaches 
have been proposed[30]. By learning the 
characteristics of nonlinear impairments from the 
collected data at the receiver, ML techniques 
have great potential to compensate for stochastic 
nonlinearity-induced signal distortions. 

When applied in nonlinearity compensation, ML 
techniques are similar to digital compensation 
methods that equalizes the nonlinear effects at 
Rx side based on received symbols. Two major 
approaches are followed: the first treats the 
received symbols as ordinary data samples and 
develop a ML model for symbol detection without 
considering system parameters, while the 
second integrates fiber parameters into ML 
modeling, thus using more comprehensive 
knowledge of optical fibers and transmission 
systems [31]. 

Based on the observation that DBP has a similar 
mathematical structure as a neural network (NN), 
deep learning based DBP techniques have been 
recently proposed [32-34], which use ML-based 
approaches to optimize the steps of the DBP 
compensation algorithm, thus reducing the 
overall complexity. 

Conclusions 

The field of the investigation of the modeling of 
nonlinear fiber effects has been extremely active 
over the last decade. The obtained results and 
developed practical tools have been extensively 
used by the community, both in transmission and 
in optical networking sectors. The next few years 
will certainly see further progress in nonlinearity 
mitigation, also because the DSP computational 
power is still significantly increasing, so that 
sophisticated techniques that seemed to be 
unrealistically complex not long ago, are 
gradually becoming viable. This might enable a 
further substantial increase in the performance of 
optical transmission systems and networks. 
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