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Abstract We use a cloud platform to demonstrate the processing of streaming data from diverse
sources for infrastructure monitoring. Telemetry data from an optical network testbed is processed for
alarm generation by anomaly detection. The optical alarm is correlated with machine-learning person
detection by video analytics.

Introduction

As optical networks become more dynamic, real-
time monitoring of performance metrics from co-
herent transponders and the network infrastruc-
ture will be important for achieving high reliabil-
ity. We are undergoing a shift in optical-network
monitoring by moving away from 15-minute in-
tervals to streaming telemetry with gNMI/gRPC[1]

for faster updates[2]. With 5G, which supports
many internet-of-things devices, we can correlate
data from diverse sources, e.g., weather data[3]

or video monitoring of the network infrastructure.
We need a scalable, distributed, platform that al-
lows event and alarm correlation from the diverse
sources. Prior work utilized a database[4]–[6] for
optical telemetry data storage and retrieval, which
is useful for optical software-defined networking
controllers[7] as well as post-failure and long-term
trend analysis. However, telemetry data is now
generated as streams of information, and it is nat-
ural to process the data as streams for flexible
and deterministic alarm generation and correla-
tion, but such a paradigm shift in network moni-
toring has not yet occurred. Research has been
done on streaming analysis at the IP layer[8].

In this work, we use stream processing to gen-

erate impairment (soft failure) alarms from an op-
tical network with streaming telemetry and corre-
late it with a person detection alarm from a video
stream that monitors a network element. The op-
tical network is vulnerable to attacks such as van-
dalism and fiber tapping[9] as well as unintentional
impairment caused by craft personnel, and the
correlated alarm provides insight for network op-
erations. We use World Wide Streams (WWS)[10],
a real-time stream processing cloud platform, to
flexibly process data and media streams. WWS
implements the distributed deployment of stream
processing units and stream forwarding using
RabbitMQ[11] and RTMP[12]/WebRTC[13]. WWS
gives different network operations teams access
to monitoring data to create stream processing
pipelines without expert knowledge in each do-
main. For video, the stream processing uses ma-
chine learning (ML) to classify objects in the im-
ages, so that video frames do not need to be
stored in a database. We demonstrate that the
streaming platform has low latency for real-time
alarm generation.

Optical Network Testbed
As diagrammed in Fig. 1, the optical network
testbed consists of six commercial Nokia 1830
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Wavelength Length (km) Freq. (THz)
WL1 31 193.67
WL2 150 193.67
WL3 257 193.73
WL4 437 193.61
WL5 86 193.67

WL6* 88 193.55
WL7* 21 193.55
WL8* 461 193.55
WL9 86 193.73

WL10 461 193.73

Fig. 1: Optical network diagram with optical attenuator and camera monitor on node N3.
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Fig. 2: a) Window averaging method b) z(t) for preFEC BER
versus time measured over 30 days c) Histogram of b)

PSS optical nodes (N1-N6) with flexgrid recon-
figurable optical add drop multiplexers and 2200
km of fiber. Seven of the ten bidirectional wave-
lengths (WLs) use Nokia flexible line cards with
variable bitrate operated at 200 Gb/s with 8QAM
modulation format, and we monitor their perfor-
mance metrics using gNMI with 10 s period.
Nodes N1, N2, N3, and N4 terminate the moni-
tored wavelengths and are the sources of the op-
tical streaming telemetry data. The path lengths
and optical frequencies are given in the table of
Fig. 1. More detail on one direction of WL9 is
shown where a variable optical attenuator (VOA)
in the path attenuates the optical signal caus-
ing optical signal-to-noise ratio degradation and
the preFEC bit error ratio (BER) to rise. N3 has
a camera pointed at it with a machine learning
based person identification process running on
WWS. In this work we correlate the person detec-
tion alarm with BER impairment on wavelengths
that terminate at N3, specifically, both directions
of WL3, WL5, WL9, and WL10.

Stream Processing
WWS implements real-time processing on a
broad set of stream types, including event
and media streams. Dataflow pipeline pro-
cessing applications are written in XStream[14],
a typed domain-specific functional-programming
language on top of TypeScript[15].

We detect point anomalies in the incoming op-
tical data stream by using a time-window detec-
tion method as shown in Fig. 2a. The mean,
µ, and standard deviation, σ, of the previous 29
data points are calculated over the window, and
z(t) of the most recent data point, d(t), is given
by z(t) = (d(t) − µ)/σ. Since the telemetry data
arrives every 10 s, the window duration is 5 min,
which removes any slower wander in the data.
Fig. 2b shows z(t) over 30 days of recorded
preFEC BER data for one of the wavelengths,
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Fig. 3: a) preFEC BER of WL9 EP2 for 30 days with artificial
anomalies b) TP and FP versus zth with a range of possible
zth c) zth ranges for anomaly detection for different endpoints

with the histogram shown in Fig. 2c. We use
z(t) to identify point anomalies in the incoming
data when z(t) crosses a threshold value, zth.
To determine an initial default value of zth, we in-
ject artificial point anomalies into the data streams
for each of the monitored wavelength endpoints.
Fig. 3a shows a trace of WL9 at node N4 (end-
point EP2) over 30 days with 50 artificial anoma-
lies created by adding 2x the mean BER (mean Q
degradation of 0.35 dB) to randomly selected data
points. We perform a scan of zth over a range
of values and calculate the number of false posi-
tives (FPs) and true positives (TPs) for detecting
1000 anomalies, shown in Fig. 3b for the same
endpoint. The bar in Fig. 3b indicates the range
of threshold values where no false positives, and
100% of true positives were detected. Fig. 3c
shows the results of applying the method to six
of the wavelengths. The value of zth = 15 al-
lows for identification of all the anomalies without
false positives, while one of the wavelengths (not
shown) requires a larger anomaly amplitude of 3x
the mean. While a fixed zth applied to every end-
point is convenient, we can adjust the threshold
for each endpoint over time to change the sen-
sitivity of the alarm. For example, wavelength 9,
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Fig. 4: a) Processing pipeline for person detection b) Video
image with ML person detection overlay indication
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Fig. 5: Diagram of the WWS stream processing where grey boxes are XStream processes

EP2 can be operated at a more sensitive level of
zth = 10 for 100% true positive detection and no
false positives.

We use a two-stage deep learning network
(mask-rcnn-resnet-101)[16], for the person detec-
tion at N3, see Fig. 4a. WWS can be extended
with stream processing functions written in any
programming language. We implemented the ML
in Python, Keras and TensorFlow using the code
at[17] as a starting point. This is Dockerized[18] to
provide a GPU-based person-detection microser-
vice to WWS via a ZeroMQ socket. The outputs
of the classifier are the classes and locations of
the objects in the frame with a latency of about 8
s and mean frame rate of 91 ms. Fig. 4b shows
a person at N3 with a bounding box and outline
imposed by the neural network.

Alarm Correlation Experiment
We use the WWS platform to correlate the op-
tical telemetry anomaly detection alarms of the
wavelengths that terminate at N3 with the person
detection alarm. Fig. 5 shows a diagram of the
XStream processes on the WWS platform. The
backend program makes the gNMI connection to
the optical nodes and sends the data directly to
the WWS source bridges using AMQP[19]. The
optical statistics functions on WWS process the
optical performance data according to the win-
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Fig. 6: a) BER and person detection alarm correlation b)
preFEC BER vs time c) z(t) for the anomaly detection

dowing method previously described. The out-
put of the wavelength monitors of interest and ML
person detection are sent to the alarm correlation
XStream process. Since the period of the opti-
cal wavelength monitor updates is 10 s, and the
person detection frame rate is 91 ms, we resam-
ple all the data streams with a period of 150 ms,
selected to be lower than the camera frame rate.
When new data is available from both sources,
the samples are output synchronously from the
resampler and combined with a logical and oper-
ation.

A typical measurement of the alarm correlation
running on WWS is shown in Fig. 6a, where the
person detection alarm initially goes high as the
person approaches the optical node. Once at the
optical node N3, the VOA attenuation is increased
by 0.5 dB on WL9 EP2, resulting in the increase
in preFEC BER at node N4 (Fig. 6b). The corre-
sponding increase in z(t) is shown in Fig. 6c, and
the preFEC BER alarm is raised in Fig. 6a due to
the crossing of zth. Following the resampling, the
correlation alarm is raised in Fig. 6a. Note that
the delay between the optical BER alarm and cor-
relation alarm is not noticeable on this timescale.
The latencies through the backend and WWS of
the optical and correlation alarms are measured
to be 40±17 ms and 133±36 ms, respectively,
referenced to the timestamp given by the network
element when the BER was measured. The cor-
relation alarm latency is largely determined by the
resampling period.

Conclusions
We demonstrated stream processing for the flex-
ible generation and correlation of optical alarms
with ML-based person detection to improve net-
work awareness and give insight to operators
when optical networks are impaired. The stream
processing platform is scalable and cloud based,
and we measured low deterministic latency.
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