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Abstract We implement a complete fiber-optic communication system as an end-to-end computational
graph using an artificial neural network (ANN)-based transceiver. We highlight transceivers implemented
using feedforward or recurrent ANN, and illustrate their performance by an example.

Introduction
Conventional communication systems consist of
several digital signal processing blocks, each per-
forming individual tasks at the transmitter and re-
ceiver, e.g. coding, modulation, pulse-shaping or
equalization. However, there is a lack of optimal,
computationally feasible algorithms for communi-
cation over dispersive nonlinear channels found
in the optical fiber systems. Consequently, a
transceiver with one or several sub-optimal mod-
ules may not achieve the optimal end-to-end sys-
tem performance, limiting the achievable data
rates and transmission reach. Designing such
systems requires carefully chosen approxima-
tions. The combination of artificial neural net-
works (ANNs), known as universal function ap-
proximators[1], and deep learning[2] provides a
framework for optimizing the system in a single
end-to-end process – an idea first introduced for
wireless communications[3]–[5]. The approach was
quickly utilized also in optical fiber communica-
tions aiming at exploiting to a greater extent the
potential for data transmission over nonlinear dis-
persive channels[6]–[14]. It consists in implement-
ing the complete fiber-optic system as an end-to-
end computational graph using ANN-based trans-
mitter and receiver. The method avoids the modu-
lar design of conventional fiber-optic systems and
enables a transceiver structure that can be opti-
mized for a specific metric in a single deep learn-

ing process spanning from the transmitter input to
the receiver output.

This paper highlights the approach of perform-
ing end-to-end deep learning in optical fiber com-
munications. It discusses two transceiver de-
signs tailored for communication over dispersive
nonlinear channels using feedforward or bidirec-
tional recurrent ANNs and compares their com-
plexity. We examine the systems performance for
short-reach optical fiber links based on intensity
modulation/direct detection (IM/DD) – preferred in
many data center, metro and access networks,
and impaired by the dispersion-induced interfer-
ence and nonlinear photo-detection[15].

Optical fiber system as an end-to-end graph
The framework of end-to-end system optimiza-
tion via deep learning is based on interpreting
the complete chain of transmitter, channel and re-
ceiver as a computational graph, shown in Fig. 1.
This is achieved by using a differentiable link
model and implementing the transceiver as a
deep ANN to form the graph segments. Such
a design allows us to jointly optimize the sig-
nal processing in an end-to-end process over the
constraints imposed by the channel. In particu-
lar, the transmitter ANN encodes the sequence
of random input messages from a finite alphabet
(. . .mt . . .) into a sequence of symbols (. . .xt . . .),
where a symbol is a block of multiple waveform
samples.
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Fig. 1: Optical fiber communication system implemented as an end-to-end computational graph.
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Fig. 2: Schematic of the symbol encoding (black arrows) and decoding (red arrows) by an FFNN-based auto-encoder.

The produced digital waveform is fed to the
transmission link, acquiring noise as well as in-
terference according to the channel model. The
channel output is distorted waveform samples,
forming the received symbols (. . .yt . . .). These
are decoded by the receiver ANN, obtaining the
recovered messages (. . . m̂t . . .). During opti-
mization, a loss between the transmitted and
received messages L =

∑
t �(mt, m̂t) is com-

puted. Utilizing the dependencies on the end-to-
end computational graph, the back-propagation
algorithm[16] is applied to obtain gradients of L
with respect to the trainable transceiver ANN pa-
rameters. The transceiver is optimized via gradi-
ent descent[17],[18] aimed at minimising L, e.g. the
message (symbol) error rate. Such auto-encoder
systems are suitable in communication scenarios
where the optimum transmitter-receiver pair is un-
known or computationally prohibitive.

Transceiver design and performance
Chromatic dispersion causes interference from
both preceding and succeeding samples and
renders the optical fiber a channel with mem-
ory[15],[19], necessitating the processing of data
sequences. To tailor the transceiver for communi-
cation over such a channel, auto-encoders based
on feedforward (FFNN)[6] as well as bidirectional
recurrent (BRNN) ANNs[10] have been proposed.
Figure 2 shows a schematic of transmitter and
receiver designed as an FFNN. This network
processes each input independently and the
architecture can be used to encode/decode
symbols without information from the previous or
future encoding/decoding. At the transmitter, the
message mt, independently chosen from a set of
M messages, is represented as a one-hot vector

1m,t ∈ R
M , for which the m-th element is 1 and

all others are 0. It is applied to the FFNN, whose
input dimension is M . After processing by mul-
tiple hidden layers, the output of the final layer,
a vector with dimension n, represents the en-
coded block of samples (symbol) xt. The FFNN
encoding can be denoted as xt = fE-FFNN (1m,t).
At the receiver, the n-dimensional symbol yt

is decoded to a probability vector pt ∈ R
M , i.e.

pt = fD-FFNN (yt), using another multi-layer FFNN
with input and softmax [2] output dimensions n

and M , respectively. The vector pt is utilised
in two ways: during transceiver optimization,
the end-to-end system loss is computed as
L(θ) = 1

|S|
∑

t∈S �(1m,t,pt), where θ is the set of
transceiver parameters, S the set of transmitted
messages and pt � fD-FFNN (H{fE-FFNN (1m,t)})
expresses the complete input-to-output FFNN
auto-encoder mapping with H{·} describ-
ing the channel. The output pt is further
used for calculating the symbol error rate as
SER = 1

|S|
∑

t∈S � {mt �= argmax(pt)}. The
FFNN auto-encoder is inherently unable to com-
pensate for interference outside of the symbol
block, which is treated as extra noise. As a
consequence, the achievable performance in
terms of compensated interference and hence
transmission distance is limited by the block
size. An alternative design based on BRNNs,
utilizing information from both pre- and post-
cursor symbols, is shown in Fig. 3. The input
is concatenated with the previous/next encoded
symbol to produce −→x t=f fw

E-RNN
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are merged via element-wise averaging into
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Fig. 3: a) Symbol encoding (black) and decoding (red) by a BRNN. b) Sliding window sequence estimation.

the n-dimensional encoded symbol xt. The
RNNs in both directions have dimensionality
M + n (input) and n (output). For decoding,
the received symbol yt is concatenated with
the preceding/succeeding receiver output,

producing
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t−1

)T
)

or
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)

. These are

merged into ht via concatenation. The receiver
RNNs have dimensionality n+2M (input) and 2M

(output). Softmax is applied to ht, obtaining the
output probability pt ∈R

M , utilized for computing
the system loss L(θ)=∑

t � (1m,t,pt), where pt�
fD-BRNN (H{fE-BRNN (. . .1m,t−1,1m,t,1m,t+1 . . .)})
is the BRNN auto-encoder function. The
optimized transceiver is employed in a slid-
ing window scheme[20] (SBRNN), shown in
Fig. 3 b). The transmitter encodes the full
stream of input messages, while at time t,
the receiver BRNN decodes the window of W

symbols (yt, . . . ,yt+W−1) to (p
(t)
t , . . . ,p

(t)
t+W−1).

The final output probabilities for message de-
cision and error counting are estimated as

pi =
min(W,i)−1∑

k=0

[min(W, i)]−1 · p(i−k)
i , i.e. the

receiver scheme provides multiple estimates for
the symbol at time t, which are combined.

The rate of the auto-encoders is ρ=log2(M)/n.
Expanding the FFNN processing memory for
fixed ρ translates in larger n and M=2ρ·n, rapidly
increasing the number of trainable parameters.
In contrast, the BRNN receiver memory depends
only on the window W , external to the end-to-end
network architecture, whose number of parame-
ters can be fixed. The auto-encoders are applied
to optically un-amplified IM/DD links where deep
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Fig. 4: BER versus distance for the FFNN and SBRNN
auto-encoders applied to optical IM/DD communication.

learning is seen as a viable DSP for address-
ing the dispersion and square-law detection in-
duced limitations[21]. The link model starts with
84 GSa/s DAC followed by a modulator, and fin-
ishes with ADC[6],[10]. The BER[11] of the systems
at 42 Gb/s for different M , n and W is compared
in Fig. 4. Adjusting W , the SBRNN allows trans-
mission below the 6.7% HD-FEC[22] at distances
beyond 70 km – yielding > 20 km improvement
over FFNN. Verified in experiments, the systems
outperformed state-of-the-art DSP[6],[13],[14].
Conclusions
This paper reviews the methods for end-to-end
optimized optical fiber transmission. It discusses
the signal processing and complexity in auto-
encoders based on feedforward and recurrent
ANNs. The presented designs are general and
can be applied to different systems and models.
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