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Abstract We propose simple expressions that can estimate the modal group delay characteristics of 
few-mode fibres from the fibre parameters. Simulations and experiments confirm that our expressions 
yield characteristics consistent with the theoretical ones. 

Introduction 
Mode-division multiplexing (MDM) transmission 
systems using few-mode fibres (FMFs) are 
being actively studied for overcoming the 
capacity limit of current fibre-optic transmission 
systems based on single-mode fibres[1],[2]. In 
MDM transmission, the differential modal group 
delay (DMD) in the FMF is of significant interest, 
since it increases the complexity of digital signal 
processing usually applied to recover the 
transmitted signals[3]. The DMD characteristics 
can be measured with a time-domain method[4], 
a frequency-domain method[5]-[7], or a modal 
interferometric method[3],[8]. While these methods 
provide accurate DMD values, they require 
complicated procedures or expensive equipment. 
From a practical viewpoint, there is a need for 
an alternative method that is simpler than 
existing methods. 

To develop a simple DMD measurement 
method, we investigate how to estimate the 
delay characteristics in FMFs from readily 
measurable fibre parameters. This work clarifies 
the relationship between the group delay of 
each mode and the fibre parameters, and 
proposes simple expressions for estimating the 
delay characteristics of the LP01 and LP11 modes 
from the parameters. Moreover, we demonstrate 
through numerical simulations and experiments 
that the feasibility of the proposed expressions 
in estimating the modal group delay 
characteristics. 

Model for estimating modal group delay 
Modal group delay  is given by[9] 
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where  is the propagation constant of a guided 
mode, k is the wavenumber, and c is the speed 
of light in a vacuum. N1 and N2 are the group 
indices of the core and cladding in the fibre, 
respectively. The term d(vb)/dv is called the 
normalized group delay. v is the normalized 
frequency and b is the normalized propagation 

constant defined as 
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where a is the core radius of the fibre. n1 and n2 
represent the refractive indices of the core and 
cladding, respectively. 

Let us consider a circumferentially symmetric 
optical fibre. We represent the refractive index of 
the fibre using the following equation 
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where r is the radial distance. (r) and 0 are the 
relative index differences at the radial 
coordinates of r and 0, respectively. Then, the 
normalized group delay of an LPlm mode with 
azimuthal number l and radial number m can 
expressed as[10] 
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where lm(r) stands for the radial electric field 
distribution of the LPlm mode. 

Substituting Eq. (5) into Eq. (1), we obtain an 
approximate expression of the modal group 
delay as follows 
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To obtain a simple expression of the modal 
group delay, we approximate the radial electric 
field of the LPlm mode by the following higher-
order Gaussian function[11] 
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where wlm is the mode field radius of the LPlm 
mode that corresponds to twice the higher-order 
Gaussian spot size[12]. Ll

m-1(x) is the associated 
Laguerre polynomial and is given by 
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By combining Eqs. (6)-(8), we can obtain 
approximate expressions of the modal group 
delay for the fibres with specific refractive index 
profiles in which our interest is high such as 
step- or graded-index fibres. 

As the simplest example, the approximate 
expressions, 01 and 11 for the modal group 
delays of the LP01 and LP11 modes, in a step-
index two-mode fibre can be obtained as 
follows: 
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and 

 

2

11 2 1 2 2
11

2 2 2

2 2 2 2 2
11 11 1 0 11

1 21 exp

2 2exp .
2

aN N N
c w

a a
w w n w

  (10) 

For a parabolic-index fibre, the approximate 
expressions of the modal group delays of the 
LP01 and LP11 modes can be obtained as 
follows: 
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and 
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DMD  between the modes can be obtained 
by the difference of the modal group delays, 

namely  = | 01- 11|. As shown by Eqs. (9)-(12), 
we have succeeded in clarifying the relationship 
between the modal group delay of each mode 
and the structural fibre parameters. Moreover, 
we found that the modal group delays and the 
DMD can be expressed in terms of easily 
measurable fibre parameters: the mode field 
radius, the core radius, and relative index 
difference. 

Numerical simulations and experiments 
To validate the proposed expressions, we 
simulated the normalized group delay d(vb)/dv 
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Fig. 1: Normalized frequency v dependence of 
normalized group delay d(vb)/dv for (a) step-index and 

(b) parabolic-index fibres. 
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Fig. 2: DMD between the LP01 and LP11 modes against 
normalized frequency v for (a) step-index and (b) 

parabolic-index fibres. 



and DMD  between the LP01 and LP11 modes 
with a help of the finite element method (FEM). 
Figures 1(a) and 1(b) plot the normalized group 
delay d(vb)/dv as a function of the normalized 
frequency v for the step- and parabolic-index 
fibers, respectively. The blue and red colors plot 
the results for the LP01 and LP11 modes, 
respectively. The solid lines show the theoretical 
results calculated using the FEM and the index 
profile. The broken lines show the estimated 
results from Eqs. (9)-(12) using the fiber 
parameters. There is good agreement between 
the estimated results of the normalized group 
delays as a function of the normalized frequency 
and the theoretical ones. Figures 2(a) and 2(b) 
plot the DMD between the LP01 and LP11 modes 
as a function of normalized frequency v. The 
solid and broken lines show the theoretical 
results of the DMD between the LP01 and LP11 
modes and the estimated results obtained from 
using Eqs. (9)-(12), respectively. Again, the 
estimated results almost match the theoretical 
values. 

Next, we prepared two optical fibres, 
hereinafter referred to as samples A and B. The 
former had a step-index profile, while the latter 
had a parabolic-index profile, as shown in Fig. 3. 
The solid and broken lines plot measured results 
and the approximated values for numerical 
simulations, respectively. We measured the 
DMD using the interferometric technique[3], and 
compared the measured results with the 
numerical simulation results. Figures 4(a) and 
4(b) show the DMD between the LP01 and LP11 
modes for samples A and B, respectively. The 
solid lines indicate the theoretical results 
calculated by differentiating the propagation 
constants obtained using the FEM, and the 
broken lines show the estimated values yielded 
by our expressions. The open circles show the 
measured results. While the estimated results 
are slightly different from the measured and 
theoretical ones, the overall perspective is that 
they are consistent. 

The results shown in Fig. 4 confirm that our 
proposed expressions can well estimate the 
modal group delay characteristics from three 
fibre parameters. Further improvement in the 
proposed expressions is required to estimate 
the DMD at a certain wavelength more 
accurately. 

Conclusions 
We proposed simple expressions for estimating 
the modal group delay characteristics in FMFs 
from a few fibre parameters. We also 
demonstrated by numerical simulations and 
experiments that the delay characteristics can 

be estimated from the mode field radius, the 
core radius, and relative index difference, which 
are easily measurable parameters. The 
expressions proposed herein can be extended 
to estimate the delay characteristics of any order 
mode higher than the LP11 mode. Our 
expressions will be useful in characterizing the 
modal group delay in FMFs. 
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Fig. 3: Refractive index profiles for (a) sample A and (b) 
sample B. 
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Fig. 4: DMD between the LP01 and LP11 modes for (a) 
sample A and (b) sample B. 



References 
[1] D. J. Richardson, J. M. Fini, and L. E. Nelson, 

“Space-division multiplexing in optical fibres”, Nature 
Photonics, vol. 7, no. 5, pp. 354-362, May 2013. 

[2] P. J. Winzer, “Scaling optical fiber networks: 
challenges and solutions”, Opt. Photon. News, vol. 26, 
no. 3, pp. 28-35, 2015. 

[3] R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, 
S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. 
Essiambre, P. J. Winzer, D. W. Peckham, A. H. 
McCurdy, and R. Lingle, “Mode-division multiplexing 
over 96 km of few-mode fiber using coherent 6 x 6 
MIMO processing”, J. Lightw. Technol., vol. 30, no. 4, 
pp. 521-531, Feb. 2012. 

[4] TIA-455-220-A, Differential mode delay measurement 
of multimode fiber in the time domain, 
Telecommunication Industry Association, 2003. 

[5] T. J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, and D. 
Y. Kim, “New optical frequency domain differential 
mode delay measurement method for a multimode 
optical fiber”, Opt. Express, vol. 13, no. 11, pp. 4005-
4011, May 2005. 

[6] J. Y. Lee and D. Y. Kim, “Determination of the 
differential mode delay of a multimode fiber using 
Fourier-domain intermodal interference analysis”, Opt. 
Express, vol. 14, no. 20, pp. 9016-9021, Oct. 2006. 

[7] S. Ohno, D. Iida, K. Toge, and T. Manabe, “High-
resolution measurement of differential mode delay of 
few-mode fiber using phase reference technique for 
swept-frequency interferometry”, Opt. Fiber Technol., 
vol. 40, pp. 56-61, Dec. 2017. 

[8] N. Shibata, M. Ohashi, R. Maruyama, and N. Kuwaki, 
“Measurements of differential group delay and 
chromatic dispersion for LP01 and LP11 modes of few-
mode fibers with depressed claddings”, Opt. Rev., vol. 
22, pp. 65-70, Feb. 2015. 

[9] D. Gloge, “Dispersion in weakly guiding fibers”, Appl. 
Opt., vol. 10, no. 11, pp. 2442-2445, Nov. 1971. 

[10] M. Ohashi, T. Kawasaki, H. Kubota, and Y. Miyoshi, 
“Prediction of modal dispersion of high-order mode 
from wavelength dependence of the mode field 
radius”, in Proceedings of the 24th OptoElectronics 
and Communication Conference (OECC 2019), WP4-
C10, 2019. 

[11] J. D. Love and C. D. Hussey, “Variational 
approximations for higher-order modes of weakly-
guiding fibres”, Opt. Quantum Electron, vol. 16, pp. 
41-48, Jan. 1984. 

[12] A. Nakamura and D. Iida, “Mode field diameter 
definitions for few-mode fibers based on spot size of 
higher-order Gaussian mode”, IEEE Photon. Journal, 
vol. 12, no. 2, 7200609, April 2020. 

 


