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Abstract For distributed Edge Computing, we propose to leverage the deterministic data delivery in 
optical Determinist Dynamic Networks to jointly optimize compute and network resource allocation. 
Numerical results show that our DDN-based approach can accelerate the application total execution 
time by 50- 70% from baseline approaches. 

Introduction 
The ultimate Edge Computing (Fig.1) is an 
aggregate of distributed Edge Data Centers (DC) 
acting as a single fabric used to deliver time-
sensitive and computation-hungry applications 
requiring parallelized processing. 

In this environment, compute and network 
resource are generally allocated independently 
which might lead to a high delivery and buffering 
delay or an inefficient use of computing 
resources[1]; e.g. a dataflow might take 
precedence over other flows and be delivered by 
some network resources to reach a busy CU and 
wait there, while these network resources would 
better be used to deliver another dataflow to an 
idle CU before. All dataflows should be delivered 
by the network just-in-time to be processed by a 
free CU[2], i.e. eliminate buffering delay at CUs. 
Just-in-time delivery relies on a precise 
knowledge of the CUs’ busy time and the network 
delivery delay. Most past reports leveraging 
some form of delivery time estimation[3][4][5] left an 
optimization gap that we propose to close. 

In previous work, we proposed the 
Deterministic Dynamic Network (DDN), a high 
bandwidth optical scheduled time-slotted network 
for Edge DC interconnexion. DDN allows for 
deterministic performance (low latency, low jitter) 
and fast connection reconfiguration[6]. The time 
slotted and scheduled nature of DDN opens the 
possibility to accurately predict the network 
latency at any time, on any path in the Edge DC. 
We leverage this latency prediction to enable the  

 
Fig.1: Distributed DDN-based Edge DC 

just-in-time delivery. Our approach jointly 
optimizes network and compute resource 
allocation to minimize workflow total completion 
time and maximize Edge DC utilization.  

Partition-aggregate workflow 

Referring to Fig.2, the conventional technique to 
parallelize a process is to use a partition-
aggregate workflow as follows: (A) Import phase: 
the application request is partitioned into smaller 
jobs to be executed simultaneously over a group 
of compute units (CU) called mappers. (B) 
Shuffle phase: The output data chunks are sent 
from the mappers to a second group of CUs, 
called reducers, where they are aggregated to 
deliver the final data output. (C) Replication 
phase: the final aggregated data is duplicated to 
different servers to increase reliability[7]. The 
workflow latency is dominated by the shuffle and 
replication phases: (i) the delay to exchange data 
between CUs over the network, (ii) the buffering 
time and (iii) the computing time at CUs. 

DDN-based just-in-time delivery 

In a DDN network, bandwidth, latency (sub-ms) 
and jitter (sub-μs)[8] are guaranteed through slot 
reservation. Slots of a few μs are allocated by a 
central scheduler in a dynamic fashion (sub-
ms)[9]. Once slots are allocated for a given data 
flow, no further switching is applied to that flow 
and its delivery delay is fixed.  

 

 

Fig.2: Partition-aggregate workflow 
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Our DDN-based approach for distributed 
computing comes in three phases: (i) we select 
mappers and reducers such that the compute 
and network load is balanced and workflow 
completion time is minimum; (ii) we perform a first 
optimization to steer workflows to execute 
simultaneously and decrease the total 
completion time of a workflow group; (iii) we 
perform a second optimization to enable the just-
in-time delivery of all dataflows to CUs. 

(i) First, we determine the available computing 
capacities of CUs and the bandwidth availabilities 
on the communication paths between them. The 
groups of CUs with maximum available 
computing capacity and bandwidth are selected 
as mappers and reducers. Then, during the 
replication stage, we select the path and the slot 
allocation between the reducer and the 
destination servers such that we minimize the 
delivery delay and deploy the path with the 
highest available bandwidth. 

(ii) We leverage the determinism of DDN to 
predict the delivery delay of a flow between a 
mapper and reducer on a single path. The 
delivery delay of a path depends on the amount 
of available bandwidth, which is directly 
proportional to the number of available timeslots 
on the path, and the slot distribution over the 
reservation calendar. The completion of a 
workflow requires that the reducers receive all 
dataflows contributing to the workflow output. 
Hence, the workflow completion time cannot be 
smaller than the largest delivery delay among all 
the dataflows belonging to this workflow, which 
we refer to as threshold delivery delay. Our 
proposition is to decrease the number of slots 
(bandwidth) allocated for all other dataflows 
belonging to this same workflow, to make their 
delivery delays equal to the threshold delivery 
delay. We devote the released slots for the other 
queued workflows. In the replication stage, the 
same approach is followed. 

This strategy maximizes the parallel 
processing of workflows, which contributes to 
minimization of the total completion time for the 
group of workflows. 

(iii) We organize just-in-time delivery of flows. 
First, using slot scheduling information, we 
calculate the delivery delay of a given dataflow in 
a given path, and retrieve the busy time of a CU 
(i.e. the remaining time before a CU is free 
again). Then CUs are categorized by classes of 
similar busy time. We define the threshold CU 
busy time as the largest busy time of that group.  
Finally, we pair a dataflow to a CU, such that the 
threshold delivery delay and threshold CU busy 
time are equal. Thus, we guarantee no buffering 
of the dataflow at the CU. 

This strategy minimizes the total completion 
time per workflow, hence per group of workflows, 
and maximizes the compute resources utilization 
efficiency. 

Numerical Analysis 

In this section, we evaluate the performance of 
our DDN-based just-in-time delivery in terms of 
Total Completion Time (Total-CT) for a group of 
workflows. The Total-CT is set by the completion 
time by workflow, the number of processes 
running in parallel and the compute resources 
utilization. 

We compare the DDN-based approach with 
today’s-typical approach that delivers dataflows 
as-fast-as-possible (AFAP) over the network. 
AFAP is a combination the scheme in phase (i) 
for CUs selection, and a greedy scheme for slots 
allocation. For each flow, AFAP grabs the whole 
available bandwidth (slots) on its path. 

For the evaluation we simulate DDN-based 
single Edge DC (Fig.1), where 10Gb/s servers 
(CU) are connected using a 10-node DDN ring 
with four 10Gb/s channels. For a fair comparison 
we use the ring topology for the evaluation of both 
DDN-based and AFAP approaches. In each 
simulated scenario, the number of servers per 
DDN node is equal to the scenario total number 
of CUs divided by 10. The Compute delay of a 
workflow is not included in the Total-CT. The 
input data (Fig.2) for each workflow is randomly 
generated between 2 to 5 GB. In the Shuffle (B) 
phase, we cap the data rate of all-mappers-to-all-
reducers dataflows to 1Gb/s. In the replication 
phase, we assume that 10% of the initial input 
data is replicated to 3 servers[7]. 

We evaluate the first optimization (ii) of the 
DDN-based approach in a scenario where all 
CUs are all fully available. We assume 40 CUs 
with 4 pairs of mappers and reducers. In Fig.3, 
we report the evolution of the Total-CT w.r.t. the 
number of workflows for both DDN-based just-in-
time delivery and AFAP. We observe that for both 
approaches the Total-CT is increasing with the 
number of workflows. In both the approaches, the 
completion time of each workflow is minimized 

Fig.3 Total-CT when all CUs are free 
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Fig.4 CU busy time distributions. 

Fig. 5 Total-CT when all CUs are busy 

through the optimization of delivery delay per 
dataflow. As the DDN-based approach performs 
an additional optimization (ii) that equalizes the 
delivery delay of all dataflows contributing to the 
same workflow w.r.t. the worst delay among them 
and reallocates the released network resources 
for the execution of additional workflows, the 
DDN-based approach outperforms AFAP in 
terms of Total-CT for a group of workflows.  

We evaluate the second optimization (iii) of 
the DDN-based approach in a scenario where all 
CUs are partly busy. Here also, we assume 40 
CUs with 4 pairs of mappers and reducers, and a 
distribution of the CU busy time, (i.e. the 
remaining time before a CU is free again) which 
follows PDF1 in Fig.4. In Fig.5, we report the 
evolution of the Total-CT w.r.t. the number of 
workflows for both DDN-based just-in-time 
delivery and AFAP, as well as the relative gain of 
DDN-based approach over AFAP. As the DDN-
approach synchronizes the arrival of a dataflow 
just in time when the CU is free, it avoids dataflow 
buffering at CU and increases the utilization of 
CUs. For this reason, we observe in Fig.5 that the 
DDN-based approach outperforms AFAP with a 
gain of 50 to 70% on the Total-CT. 

In Fig.6, we evaluate the impact of increasing 
the number of CUs on the Total-CT gain for a 
small (100) and large (2000) number of 
workflows. For 40, 80, 120 and 160 CUs we take, 
respectively, 4, 8, 12 and 16 pairs of mappers 
and reducers. The result shows that even if the 
gain on Total-CT decreases, its drop is found to 
depart from a linear decrease by a significant 
amount, e.g., if we compare 40 and 160 CUs 

Fig.6 Evolution of the gain on Total-CT with no. of CUs 

Fig.7 Evolution of the gain on Total-CT for different PDF 
of CU busy time 

cases, we quadruple the number of CUs while the 
gain drops at worst by only a factor of 1.75. 

In the last scenario, we evaluate the impact of 
the distribution of the CUs busy time on the Total-
CT. We consider an edge DC hosting multiple 
applications with very heterogenous needs in 
computing power, where CU busy times varies 
significantly from one application to the next. We 
assess the Total-CT using different busy time 
distributions (Fig.4) for both DDN-based and 
AFAP approaches. In Fig.7, we show the gain on 
Total-CT for 2000 number of workflows using 
PDF2, 3, and 4 w.r.t to PDF1. Fig.7 shows, for 
AFAP, a strong degradation of the gain on Total-
CT with the increase of CU busy time 
heterogeneity. With the DDN-based just-in-time 
delivery the gain is almost unchanged, as an 
evidence of its optimal efficiency, even in a 
heterogenous application environment. 

Conclusion 

We proposed to leverage the deterministic data 
delivery in our optical DDN to jointly optimize 
compute and network resource allocation in an 
edge DC. Our approach increases the edge DC 
utilization by 1) decreasing the completion time 
per workflow, 2) increasing number of workflows 
running in parallel, hence decreasing the total 
completion time for a group of workflows and 3) 
avoiding idle compute resources. We achieved a 
gain up to 70% with respect to the baseline 
approach. The gain that we showed for a single 
edge DC can be extended to distributed edge 
computing. 
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