

Deterministic Dynamic Network-Based Just-in-Time Delivery for
Distributed Edge Computing

Subhadeep Sahoo(1, 2), Ning-Hai Bao(2), Sébastien Bigo(1), Nihel Benzaoui(1)

(1) Nokia Bell Labs, 91620 Nozay, France, subhadeep.sahoo4@gmail.com
(2) School of Communication and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing, 400065, China

Abstract For distributed Edge Computing, we propose to leverage the deterministic data delivery in
optical Determinist Dynamic Networks to jointly optimize compute and network resource allocation.
Numerical results show that our DDN-based approach can accelerate the application total execution
time by 50- 70% from baseline approaches.

Introduction
The ultimate Edge Computing (Fig.1) is an
aggregate of distributed Edge Data Centers (DC)
acting as a single fabric used to deliver time-
sensitive and computation-hungry applications
requiring parallelized processing.

In this environment, compute and network
resource are generally allocated independently
which might lead to a high delivery and buffering
delay or an inefficient use of computing
resources[1]; e.g. a dataflow might take
precedence over other flows and be delivered by
some network resources to reach a busy CU and
wait there, while these network resources would
better be used to deliver another dataflow to an
idle CU before. All dataflows should be delivered
by the network just-in-time to be processed by a
free CU[2], i.e. eliminate buffering delay at CUs.
Just-in-time delivery relies on a precise
knowledge of the CUs’ busy time and the network
delivery delay. Most past reports leveraging
some form of delivery time estimation[3][4][5] left an
optimization gap that we propose to close.

In previous work, we proposed the
Deterministic Dynamic Network (DDN), a high
bandwidth optical scheduled time-slotted network
for Edge DC interconnexion. DDN allows for
deterministic performance (low latency, low jitter)
and fast connection reconfiguration[6]. The time
slotted and scheduled nature of DDN opens the
possibility to accurately predict the network
latency at any time, on any path in the Edge DC.
We leverage this latency prediction to enable the

Fig.1: Distributed DDN-based Edge DC

just-in-time delivery. Our approach jointly
optimizes network and compute resource
allocation to minimize workflow total completion
time and maximize Edge DC utilization.

Partition-aggregate workflow

Referring to Fig.2, the conventional technique to
parallelize a process is to use a partition-
aggregate workflow as follows: (A) Import phase:
the application request is partitioned into smaller
jobs to be executed simultaneously over a group
of compute units (CU) called mappers. (B)
Shuffle phase: The output data chunks are sent
from the mappers to a second group of CUs,
called reducers, where they are aggregated to
deliver the final data output. (C) Replication
phase: the final aggregated data is duplicated to
different servers to increase reliability[7]. The
workflow latency is dominated by the shuffle and
replication phases: (i) the delay to exchange data
between CUs over the network, (ii) the buffering
time and (iii) the computing time at CUs.

DDN-based just-in-time delivery

In a DDN network, bandwidth, latency (sub-ms)
and jitter (sub-μs)[8] are guaranteed through slot
reservation. Slots of a few μs are allocated by a
central scheduler in a dynamic fashion (sub-
ms)[9]. Once slots are allocated for a given data
flow, no further switching is applied to that flow
and its delivery delay is fixed.

Fig.2: Partition-aggregate workflow
Edge DC

Edge DC

Edge DC

Edge DC
Servers

Optical
DDN ring

Input
Data

Mappers
Reducers

Servers

Import
phase

(A)

Shuff le
phase

(B)

Replicat ion
phase

(C)

buff .
comp.

buff .
comp.

Our DDN-based approach for distributed
computing comes in three phases: (i) we select
mappers and reducers such that the compute
and network load is balanced and workflow
completion time is minimum; (ii) we perform a first
optimization to steer workflows to execute
simultaneously and decrease the total
completion time of a workflow group; (iii) we
perform a second optimization to enable the just-
in-time delivery of all dataflows to CUs.

(i) First, we determine the available computing
capacities of CUs and the bandwidth availabilities
on the communication paths between them. The
groups of CUs with maximum available
computing capacity and bandwidth are selected
as mappers and reducers. Then, during the
replication stage, we select the path and the slot
allocation between the reducer and the
destination servers such that we minimize the
delivery delay and deploy the path with the
highest available bandwidth.

(ii) We leverage the determinism of DDN to
predict the delivery delay of a flow between a
mapper and reducer on a single path. The
delivery delay of a path depends on the amount
of available bandwidth, which is directly
proportional to the number of available timeslots
on the path, and the slot distribution over the
reservation calendar. The completion of a
workflow requires that the reducers receive all
dataflows contributing to the workflow output.
Hence, the workflow completion time cannot be
smaller than the largest delivery delay among all
the dataflows belonging to this workflow, which
we refer to as threshold delivery delay. Our
proposition is to decrease the number of slots
(bandwidth) allocated for all other dataflows
belonging to this same workflow, to make their
delivery delays equal to the threshold delivery
delay. We devote the released slots for the other
queued workflows. In the replication stage, the
same approach is followed.

This strategy maximizes the parallel
processing of workflows, which contributes to
minimization of the total completion time for the
group of workflows.

(iii) We organize just-in-time delivery of flows.
First, using slot scheduling information, we
calculate the delivery delay of a given dataflow in
a given path, and retrieve the busy time of a CU
(i.e. the remaining time before a CU is free
again). Then CUs are categorized by classes of
similar busy time. We define the threshold CU
busy time as the largest busy time of that group.
Finally, we pair a dataflow to a CU, such that the
threshold delivery delay and threshold CU busy
time are equal. Thus, we guarantee no buffering
of the dataflow at the CU.

This strategy minimizes the total completion
time per workflow, hence per group of workflows,
and maximizes the compute resources utilization
efficiency.

Numerical Analysis

In this section, we evaluate the performance of
our DDN-based just-in-time delivery in terms of
Total Completion Time (Total-CT) for a group of
workflows. The Total-CT is set by the completion
time by workflow, the number of processes
running in parallel and the compute resources
utilization.

We compare the DDN-based approach with
today’s-typical approach that delivers dataflows
as-fast-as-possible (AFAP) over the network.
AFAP is a combination the scheme in phase (i)
for CUs selection, and a greedy scheme for slots
allocation. For each flow, AFAP grabs the whole
available bandwidth (slots) on its path.

For the evaluation we simulate DDN-based
single Edge DC (Fig.1), where 10Gb/s servers
(CU) are connected using a 10-node DDN ring
with four 10Gb/s channels. For a fair comparison
we use the ring topology for the evaluation of both
DDN-based and AFAP approaches. In each
simulated scenario, the number of servers per
DDN node is equal to the scenario total number
of CUs divided by 10. The Compute delay of a
workflow is not included in the Total-CT. The
input data (Fig.2) for each workflow is randomly
generated between 2 to 5 GB. In the Shuffle (B)
phase, we cap the data rate of all-mappers-to-all-
reducers dataflows to 1Gb/s. In the replication
phase, we assume that 10% of the initial input
data is replicated to 3 servers[7].

We evaluate the first optimization (ii) of the
DDN-based approach in a scenario where all
CUs are all fully available. We assume 40 CUs
with 4 pairs of mappers and reducers. In Fig.3,
we report the evolution of the Total-CT w.r.t. the
number of workflows for both DDN-based just-in-
time delivery and AFAP. We observe that for both
approaches the Total-CT is increasing with the
number of workflows. In both the approaches, the
completion time of each workflow is minimized

Fig.3 Total-CT when all CUs are free

0

100

200

300

400

500

0 500 1000 1500 2000

To
ta

l-C
om

p.
 T

im
e

(s
)

Number of worflows

DDN-based
AFAP

Fig.4 CU busy time distributions.

Fig. 5 Total-CT when all CUs are busy

through the optimization of delivery delay per
dataflow. As the DDN-based approach performs
an additional optimization (ii) that equalizes the
delivery delay of all dataflows contributing to the
same workflow w.r.t. the worst delay among them
and reallocates the released network resources
for the execution of additional workflows, the
DDN-based approach outperforms AFAP in
terms of Total-CT for a group of workflows.

We evaluate the second optimization (iii) of
the DDN-based approach in a scenario where all
CUs are partly busy. Here also, we assume 40
CUs with 4 pairs of mappers and reducers, and a
distribution of the CU busy time, (i.e. the
remaining time before a CU is free again) which
follows PDF1 in Fig.4. In Fig.5, we report the
evolution of the Total-CT w.r.t. the number of
workflows for both DDN-based just-in-time
delivery and AFAP, as well as the relative gain of
DDN-based approach over AFAP. As the DDN-
approach synchronizes the arrival of a dataflow
just in time when the CU is free, it avoids dataflow
buffering at CU and increases the utilization of
CUs. For this reason, we observe in Fig.5 that the
DDN-based approach outperforms AFAP with a
gain of 50 to 70% on the Total-CT.

In Fig.6, we evaluate the impact of increasing
the number of CUs on the Total-CT gain for a
small (100) and large (2000) number of
workflows. For 40, 80, 120 and 160 CUs we take,
respectively, 4, 8, 12 and 16 pairs of mappers
and reducers. The result shows that even if the
gain on Total-CT decreases, its drop is found to
depart from a linear decrease by a significant
amount, e.g., if we compare 40 and 160 CUs

Fig.6 Evolution of the gain on Total-CT with no. of CUs

Fig.7 Evolution of the gain on Total-CT for different PDF
of CU busy time

cases, we quadruple the number of CUs while the
gain drops at worst by only a factor of 1.75.

In the last scenario, we evaluate the impact of
the distribution of the CUs busy time on the Total-
CT. We consider an edge DC hosting multiple
applications with very heterogenous needs in
computing power, where CU busy times varies
significantly from one application to the next. We
assess the Total-CT using different busy time
distributions (Fig.4) for both DDN-based and
AFAP approaches. In Fig.7, we show the gain on
Total-CT for 2000 number of workflows using
PDF2, 3, and 4 w.r.t to PDF1. Fig.7 shows, for
AFAP, a strong degradation of the gain on Total-
CT with the increase of CU busy time
heterogeneity. With the DDN-based just-in-time
delivery the gain is almost unchanged, as an
evidence of its optimal efficiency, even in a
heterogenous application environment.

Conclusion

We proposed to leverage the deterministic data
delivery in our optical DDN to jointly optimize
compute and network resource allocation in an
edge DC. Our approach increases the edge DC
utilization by 1) decreasing the completion time
per workflow, 2) increasing number of workflows
running in parallel, hence decreasing the total
completion time for a group of workflows and 3)
avoiding idle compute resources. We achieved a
gain up to 70% with respect to the baseline
approach. The gain that we showed for a single
edge DC can be extended to distributed edge
computing.

37 ms20 ms 54 ms

10 ms5 ms 15 ms

10 ms5 ms 15 ms

10 ms5 ms 15 ms

205 ms200 ms 210 ms

305 ms300 ms 310 ms

405 ms400 ms 410 ms

Pdf 1

Pdf 2

Pdf 3

Pdf 4

0

200

400

600

800

1000

0

20

40

60

80

100 500 1000 1500 2000

To
ta

l-C
om

p.
 T

im
e

(s
)

To
ta

l-C
om

. T
im

e
 g

ai
n

(%
)

Number of worflows

Gain
DDN-based
AFAP

0

20

40

60

80

40 80 120 160

To
ta

l-C
om

p.
 T

im
e

 g
ai

n
(%

)

Number of CU

100 workflow 2000 worflows

-60

-40

-20

0
DDN-based AFAP

To
ta

l-C
om

p.
 T

im
e

ga
in

(%

) PDF2 vs.1

PDF3 vs.1

PDF4 vs.1

References
[1] R. Nirmalan and K. Gokulakrishnan, “Survey on Map

Reduce Scheduling Algorithms in Hadoop
Heterogeneous Environments”, in Proc. 3rd
International Conference on Inventive Computation
Technologies (ICICT), Coimbatore, India, Nov. 2018.

[2] A. Ousterhout, A. Belay, and I. Zhang, “Just In Time
Delivery: Leveraging Operating Systems Knowledge
for Better Datacenter Congestion Control”, in Proc.
11th USENIX Conference on Hot Topics in Cloud
Computing, Jul. 2019.

[3] R. Monisha and K. R. Sekar, “Heterogeneous Map
Reduce Scheduling Using First Order Logic”, in Proc.
2nd International Conference on Trends in Electronics
and Informatics (ICOEI), Tirunelveli, India, May. 2018.

[4] B. P. Lohani, A. Singh and V. Bibhu, “A hybrid
optimization approach using Evolutionary Computing
and Map Reduce Architecture”, in Proc. 2019
International Conference on Advances in Computing
and Communication Engineering (ICACCE), Tamil
Nadu, India, Apr. 2019.

[5] M. S. Shanoda, S. A. Senbel and M. H. Khafagy,
“JOMR: Multi-join optimizer technique to enhance
map-reduce job”, in Proc. 9th International Conference
on Informatics and Systems, Cairo, Egypt, Dec. 2014.

[6] S. Bigo, “Overturning the Eight Fallacies of Distributed
Computing with the Octopus Edge Network”, in Proc.
Optical Fiber Communication Conference (OFC), San
Diego, California, United States, Mar. 2020.

[7] Y. Tang et al., “OEHadoop: Accelerate Hadoop
Applications by Co-Designing Hadoop With Data
Center Network”, IEEE Access, vol. 6, pp. 25849–
25860, May. 2018.

[8] N. Benzaoui et al., “Deterministic Dynamic Networks
(DDN)”, Journal of Lightwave Technology, vol. 37, no.
14, pp. 3465–3474, May. 2019.

[9] M. Szczerban et al., “Real-time Control and
Management Plane for Edge-Cloud Deterministic and
Dynamic Networks,” IEEE/OSA Journal of Optical
Communication and Networking, vol. 12, no. 11, pp.
312–323, Aug. 2020.

