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Abstract The overarching goal in intelligent network design is to deliver capacity when and where it is
needed. The key to this is to understand which network topology characteristics impact the achievable
network throughput. This is explored through the use of a new generative network model, taking into
account physical layer network characteristics.

Introduction

Multiwavelength optical fibre networks underpin
the infrastructure of the Internet and enable a mul-
titude of cloud services. Growing data demands
and range of application require the network to
be intelligent, able to adapt to the application de-
mands, bandwidth or delay constraints, and de-
liver capacity when and where it is needed. Early
work on wavelength routing focused on calcu-
lating wavelength requirements in arbitrarily con-
nected mesh networks[1], without taking physical
fibre characteristics into account. However, net-
work throughput is a function of fibre parame-
ters, link distances and lightpath configurations,
and networks can not solely be characterised by
randomly connected network topologies, defined
by a set of vertices and edges[2]. It is the com-
bination of network structure and physical prop-
erties, which will provide insights on how to de-
sign optimum topology and wavelength routing
algorithms and make more intelligent use of de-
ployed networks. Most papers on routing and re-
source allocation use specific (and typically a very
small number) of published network topologies as
benchmarks and, thus, the results are difficult to
compare or to generalise into a set of parameter-
isable network design rules[3]–[8].

Large numbers of synthetic graphs have been
analysed using generative models[9]–[12], however
mostly without including spatial information or
physical properties of optical networks. Known
as non-geometric generative models, the Erdos-
Renyi (ER)[13] and Barabasi-Albert (BA)[14] mod-
els are amongst the most widespread of these.

To understand the relationship between net-
work topology and network performance, we de-
scribe a new generative graph model that takes
spatial information into account, by incorporat-
ing the average signal-to-noise ratio into the BA

Fig. 1: Process of graph generation and optical network
performance analysis.

model. The results are analysed in terms of wave-
length requirements and overall network through-
put and are compared to the NSFNET[15] and
CONUS[16] topologies, representing large North
American networks, frequently used in optical
network studies.

Generative Graph Models
To account for distance-dependant transmission
penalties in optical networks, we include the
signal-to-noise ratio (SNR) in the probabilities
of choosing edges when generating the graphs.
Since geometric generative models capture the
grid-like behaviour of real optical networks[17], yet



fail at modelling local hubs, we use the con-
ventional BA model[14], known for creating highly
connected hubs, as the base. The new model,
termed SNR-BA, has probability weights given by:
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where SNR(i, j) is the SNR of the link between
nodes i and j. The SNR includes nonlinear dis-
tortion caused by the optical Kerr effect, which
can be approximated as noise, as well as am-
plified spontaneous emission noise from optical
amplifiers. To decouple the accumulation of noise
across multiple fibre spans[18], the nonlinear in-
terference can be considered to accumulate in-
coherently. Assuming a similar (eg the average)
SNR for each span, with the number of spans
given by n =

⌊
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⌉
, where L is the span length

and �x� denotes rounding to the nearest integer,
the SNR of a lightpath between node i and j is
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where SNR1 is the SNR after a single span. Sub-
stituting (2) in (1) yields the proposed probability
weights:

PSNR-BA(i, j) ≈ 1(∑
k∈N
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where the approximation is introduced by drop-
ping the rounding operation. Derivation of (3) as-
sumed that the network spans are identical; while
this is not always satisfied in practice, (3) still de-
scribes the average SNR scaling with distance.

Methodology

The performance metrics used to investigate the
impact of structural and physical distance prop-
erties are (i) the lowest number of wavelengths
needed to route all-to-all demands (λLL)[19] and
(ii) the maximum network throughput given zero
blocking and uniform traffic. As shown in 1, start-
ing with the CONUS and NSFNET node posi-
tions, 200 graphs were generated by ER, BA and
SNR-BA, respectively, with a total 600 graphs per
topology. The constraints imposed on the gener-
ated topologies were (i) a minimum degree of 2

and that (ii) no graph could be cut in two by re-
moval of a single edge. The dramatically different
network topologies, generated from the same set
of CONUS nodes by different generative models,
are seen in figure 1. As the CONUS topology is
very sparse (connectivity, defined in[1] of 0.082),
the ER and BA graphs struggled to satisfy the re-
silience constraint, creating graphs with 25% and
19% more edges than the original network. Exact
edge numbers for all generative models based on
the NSFNET node locations were achieved due
to its high connectivity of 0.23.

For the exact calculation of wavelength require-
ments (λLL) and throughput, an integer linear
program (ILP) was used. We assumed a fully
populated C-band (1530-70 nm) and 16 GBd
Nyquist spaced channels (channel spacing of
0.128nm), giving 312 possible wavelengths. All
links were assumed to be multiples of 80km stan-
dard single mode fibre spans with β = 0.2 dB

km ,D =

18 ps
mm·km and γ = 1.2 1

W ·km , amplified by identi-
cal erbium-doped fibre amplifiers, (noise figure of
4dB). They were interfaced with colourless, direc-
tionless and contentionless, reconfigurable op-
tical add-drop multiplexers (CDC-ROADM). The
ILP computed λLL for all the 1200 of the ER,
BA and SNR-BA graphs, to compare these with
the λLL value, calculated for the CONUS and
NSFNET actual topologies (with the exact link dis-
tances).

The maximum throughput (T ) for the generated
graphs was calculated via another ILP formula-
tion[3] and a closed form Gaussian noise (GN)
physical layer impairments (PLI) model[20] to es-
timate the SNR of the different lightpaths, to com-
pare real and generated networks. For both ILP
formulations only shortest paths were considered
when calculating both λLL and T .

Results
The ILP yielded the minimum wavelength require-
ment, that is the minimum number of wavelengths
needed to route the N(N − 1)/2 demands be-
tween all node pairs, for the CONUS network as
122, for the NSFNET this number as 13, same
as[1]. These are shown in the box-plots of figure 2,
together with the values for the ER, BA and SNR-
BA graphs. The box-plot shows the distribution
of the data together with the median, interquartile
range and the minimum and maximum values.

Figure 2a shows that the CONUS-based ER
and BA graphs have 52% and 51% lower wave-
length requirements than the SNR-BA graphs.
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Fig. 2: Minimum number of wavelengths (λLL) for the ER, BA and SNR-BA graphs based on (a) CONUS and (b) NSFNET
node-positions. Maximum uniform bandwidth throughput (T ) for ER, BA and SNR-BA graphs based on (c) CONUS and (d)

NSFNET node-positions.

Similarly, NSFNET-based ER and BA graphs (fig-
ure 2b) have 31% and 23% lower wavelength re-
quirements, than the SNR-BA graphs. The ER
and BA graphs appear to have a structural advan-
tage, in terms of wavelength requirements, over
the SNR-BA graphs, having smaller diameters
and edges connecting larger part of the graph.
However, given the overarching goal of maximis-
ing the network throughput, we must now con-
sider physical properties, in conjunction with the
structural properties.

The maximum uniform throughput (T ) of the
ER, BA and SNR-BA graphs based on the
CONUS and NSFNET topologies was calculated
and is shown in figure 2c and d. It can be
seen that it is now the SNR-BA graphs that,
on average, perform 48% better than the ER
graphs and 43% better than the BA graphs for the
graphs based on the CONUS topology, despite
the greater number of edges in the ER and BA
graphs. For the NSFNET-based graphs, the SNR-
BA graphs, on average, outperformed the BA and
ER graphs by 46% and 27%, respectively. There-
fore, it is clear that the ER and BA graphs, on
average, perform worse than the SNR-BA graphs
for both example networks. This drop in perfor-
mance between the ER and BA graphs compared
to the SNR-BA graphs is the result of longer path

lengths. The paths in the CONUS-based ER and
BA graphs are on average 215% and 187%, re-
spectively, longer than those taken over the SNR-
BA graphs. For the NSFNET-based graphs, al-
though shorter, the signals travels 95% and 98%
further over the ER and BA graphs compared to
the SNR-BA graphs. This difference in distances,
and the associated transmission penalties, domi-
nate the achievable throughput, and at these dis-
tances the structural advantages of the ER and
BA graphs do not translate into larger through-
puts.

In conclusion, the study of structural and
physical properties of optical networks, using
generative models highlights that the structural
advantage of lower minimum wavelength re-
quirements in ER and BA graphs, does not
equate to higher throughputs due to the increased
path lengths, and associated transmission penal-
ties. The proposed model of SNR-BA, how-
ever, chooses shorter edges, minimising path
lengths throughout the graph and therefore, help-
ing to maximise throughput when the distance
dominates the achievable throughput in the net-
work. Work is ongoing to quantify the impact
of demand variation, wavelength requirements,
distance scaling and throughput for the different
graph models.
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